

August 8, 2016

MAPLE STREET SHELTER 1580 Maple Street Redwood City, CA Project No. PC019

Issued on August 8, 2016

Bid Due Date: August 25, 2016

TO ALL PLAN HOLDERS:

The following Addendum No. 2 to the above referenced project shall be included in the project Plans and Specifications.

A. SOILS REPORT. attached :

Item 1: The attached Geotechnical Engineering Investigation, REVISED REPORT, dated July 19, 2016 and prepared by BAGG Engineers and supplemental Recommended Slab Support Letter with a schematically drawn fill profile, dated July 22, 2016 is provided for reference and is part of the Contract Documents.

B. HAZMAT REPORT, attached :

Item 1: The attached Pre- Renovation Hazardous Materials Survey, dated July 14, 2016, prepared by Vista Environmental Consulting is provided for reference and is a part of the Construction Documents. Abatement and disposal of suspect material is a part of this contract.

Questions regarding this project should be directed to Department of Public Works, 555 County Center, 5th Floor, Redwood City, California, 94063-1065 (Project Manager is Johnny Chiem, <u>ichiem@smcgov.org</u>, 650-599-1349)

Confirmation of Receipt

This form must be returned with your proposal or received by proposal due date

Addendum No. 2

MAPLE STREET SHELTER 1580 Maple Street Redwood City, CA Project No. PC019 Department of Public Works 555 County Center, 5th Floor Redwood City, CA 94063

This is to confirm that **Addendum No. 2 issued on** ______ has been received and that all information contained in the addendum has been incorporated into the Contractor's proposal.

By Contractors:

Company Name

Authorized Signature

Print Name

Date

July 19, 2016 BAGG Job No. COUSM-16-04

County of San Mateo Department of Public Works Facilities Division 555 County Center, 5th Floor Redwood City, CA 94063

ATTENTION: Doug Konig, Project Manager

REVISED REPORT Geotechnical Engineering Investigation Proposed Cabana and Pet Kennel San Mateo County Maple Street Shelter 1580 Maple Street Redwood City, California

Dear Mr. Konig:

Transmitted herewith is the report summarizing the results of our geotechnical engineering investigation for the proposed construction of a cabana and pet kennel within the open yard area at the Maple Street Shelter located at 1580 Maple Street in Redwood City, California. This report describes our investigative procedures, includes our conclusions pertaining to the results of our subsurface exploration and laboratory testing, which formed the basis of our conclusions and presents recommendations related to the geotechnical engineering aspects of the proposed project.

We thank you for the opportunity to perform these services. Please do not hesitate to contact us, should you have any questions or comments.

Very truly yours, **BAGG Engineers**

Anthony N. Lusich, PE. GE Supervising Engineer

Evan Wolf Project Geologist

REVISED REPORT

Geotechnical Engineering Investigation Proposed Cabana and Pet Kennel San Mateo County Maple Street Shelter 1580 Maple Street Redwood City, California

for

San Mateo County Department of Public Works Facilities Division

TABLE OF CONTENTS

1.0	INTF	RODUCTION
2.0	SITE	AND PROJECT DESCRIPTION
3.0	PUR	POSE
4.0	SCO	PE OF SERVICES
5.0	FIEL	D EXPLORATION AND LABORATORY TESTING 4
6.0	6.1 F	DLOGY AND SEISMICITY
7.0	SITE	CONDITIONS
	7.1 9	Surface Conditions
	7.2 9	Subsurface Conditions
	7.3 F	Fill Soils
	7.4 0	Groundwater10
8.0	GEO	PHAZARD EVALUATION
	8.1 0	CBC 2013 Site Characterization10
	8.2 L	Liquefaction PotentialError! Bookmark not defined.
	8.2 L	Liquefaction Potential11
	8.3 0	Other Geologic Hazards12
	8.3.1	
	8.3.2	2 Potential for Lateral Spreading 12
	8.3.3	
	8.3.4	Flooding Potential 13
9.0		CUSSION AND RECOMMENDATIONS
		General13
	9.2 9	Site Grading14

9.2	.2.1 Subgrade Preparation	
9.2	.2.2 Criteria for Imported Fill	15
9.2	.2.3 Underground Utilities	16
9.2	.2.4 Earthwork and Trench Backfill Observation and Testing	
9.2	.2.5 Contractor's Responsibility	
9.3	Foundations	16
9.4	Lateral Design	
9.5	Settlements	
9.6	Concrete Pads	
9.7	Drainage Requirements	
9.8	Soil Corrosivity Evaluation	
9.9	Plan Review	
9.10		
10.0 0	CLOSURE	

The following references and plates are attached and complete this report:

Plate 1	Vicinity Map
Plate 2A	Site Plan
Plate 2B	Site Development Plan
Plate 3	Regional Geology Map
Plate 4	Regional Fault Map
Plate 5	Unified Soil Classification System
Plate 6	Soil Terminology
Plate 7	Boring Log Notes
Plate 8	Key to Symbols
Plates 9A thru 10B	Boring Logs
Plate 11	Plasticity Data
Plate 12	Corrosivity Tests Summary

ASFE document titled "Important Information About Your Geotechnical Engineering Report"

REVISED REPORT

Geotechnical Engineering Investigation Proposed Cabana and Pet Kennel San Mateo County Maple Street Shelter 1580 Maple Street Redwood City, California

for

San Mateo County Department of Public Works Facilities Division

1.0 INTRODUCTION

This report presents the results of our geotechnical engineering investigation performed to address the proposed construction of two non-habitable structures, a Cabana and a Pet Kennel, within the open yard area on the northern portion of the Maple Street Shelter located at 1580 Maple Street in Redwood City, California. The attached Plate 1, Vicinity Map, shows the general location of the site and Plate 2A, Site Plan, depicts the existing site layout, and the approximate locations of the two exploratory borings advanced by BAGG as part of this investigation. The attached Plate 2B, Site Development Plan, depicts the existing site layout and the proposed site improvements as well as the approximate locations of the exploratory borings advanced by BAGG at the site.

For this investigation, we received the following drawings from CJW Architecture:

• Unsigned plan set, dated December 8, 2015, containing sheets: A-1.4, A-2.4, and A-2.5. The referenced sheets depict the proposed site layout, pet kennel plan, and cabana plan, respectively.

Reference is made to the geotechnical report titled "Geotechnical Engineering Investigation, San Mateo County, Maple Street Shelter Yard Surfacing, 1580 Maple Street, Redwood City, California" (Project No. COUSM-16-*01) prepared by this office and dated May 4, 2016. The above referenced documents provided the basis for selecting the boring locations and provided information for the conclusions and recommendations presented in the following sections of this report. A summary of the laboratory tests, evaluations, and our recommendations for site preparation and support of the proposed structures and the associated site improvements are presented in the following sections of this report.

2.0 SITE AND PROJECT DESCRIPTION

The subject property consists of a relatively flat, rectangular-shaped parcel approximately ½ mile south of Bair Island and approximately 0.2 miles east of Redwood Creek at its undercrossing with U.S. Route 101. The subject property is situated within a relatively low lying area near the eastern terminus of Maple Street in Redwood City, San Mateo County, California. The subject property is bordered by Maple Street to the east, U.S. Route 101 to the south, and parking areas to the north and west. The subject property is currently developed with an operating shelter building consisting of an approximately 22,000 square foot, rectangular-shaped building on the eastern portion of the property, an approximately 16,000 square foot correctional facility on the southern portion of the property. An approximately 12,000 square foot yard area, developed with a basketball court and landscape areas, exists on the northern portion of the property.

It is our understanding that the project will consist of the construction of two non-habitable structures, an approximately 430 square foot cabana and an approximately 670 square foot pet kennel, on the on the southwest and northern portions of the existing yard area, respectively.

3.0 PURPOSE

The purpose of our investigation was to establish the geotechnical characteristics of the subsurface soils at the locations of the proposed structures, and provide recommendations for the design of the structure foundations, preparation of the structure pads, and related drainage control measures. On this basis, our report addresses:

- Geologic site conditions and seismicity of the project site, including distance to the active faults in the region, and probability of a major earthquake on relevant faults,
- Seismic parameters for the site per the 2013 edition of the California Building Code,
- Specific soil conditions discovered by our borings, such as expansive, loose, saturated, collapsible, or soft surface and subsurface soils that may require special mitigation measures or impose restrictions on the project, including the thickness and consistency of any existing fill soils, and depth to groundwater if encountered,
- Criteria for site grading including preparation of the upper soils to receive the new improvements, placement of fills and backfills, and trench backfill requirements, including the suitability of the excavated soils from the site for use as fill and backfill material,
- Criteria for the support of the proposed structures, including allowable bearing values and lateral resistance for spread footing foundations
- Estimate of the total post-construction settlements and the related differential settlements for the new structures to be supported on the recommended foundation type,
- General provisions for the control of surface drainage in areas surrounding the proposed structures,
- Corrosivity of the site materials and recommendations for reducing the effect of soil corrosion on the below grade foundation elements and underground utilities,

4.0 SCOPE OF SERVICES

The scope of our services consisted of the following specific tasks:

- 1. Review the soils information from previous reports and investigations conducted by BAGG Engineers and others at the site regarding the subsurface conditions in the general area of the proposed structures including published geologic maps, state seismic hazard maps, etc.
- 2. Mark the planned boring locations in the field, coordinate the field exploration with the client representative, and notify Underground Service Alert (USA) at least 72 hours in advance.
- 3. Obtain a drilling permit from San Mateo County Department of Environmental Health.

- 4. Drill, log, and sample two (2) borings to depths of 20 feet below the existing ground surface using a portable drilling rig equipped with solid flight hollow augers. The subsurface investigation was conducted under the supervision of one of our geologists who also obtained disturbed bulk, Standard Penetration Test, and relatively undisturbed ring samples of the subsurface materials at 2- to 5-foot intervals for visual classification and laboratory testing. Measure the depth to groundwater encountered in the borings and backfill the borings with cement grout in accordance with San Mateo County Environmental Health protocol.
- 5. Perform a laboratory testing program on the collected soil samples to evaluate the engineering characteristics of the subsurface soils. Tests included Atterberg Limits, corrosion and moisture-density measurements, as judged appropriate.
- 6. Perform engineering analysis based on the results obtained from the above tasks and oriented towards the above-described purpose of the investigation.
- 7. Prepare a report containing the exploration and laboratory data, a vicinity map, a site plan, boring logs, and summarizing our findings, recommendations, opinions and conclusions
- 8. Prepared one electronic copy, and four hard copies of the final report containing the exploration and laboratory data, and summarizing our findings including a site plan, borings logs, laboratory test results, and our conclusions, and recommendations

5.0 FIELD EXPLORATION AND LABORATORY TESTING

Subsurface conditions at the site were explored on June 17, 2016 by drilling two borings to depths of 20 feet (designated as Borings B-1 and B-2) at the approximate locations shown on the attached Plate 2, Site Plan. The borings were advanced with a portable drilling rig equipped with solid flight augers and a rope and cathead attached to a 140-lb hammer. One of our geologists technically directed the exploration, maintained a continuous log of the borings, and obtained relatively undisturbed ring and Standard Penetration Test samples for laboratory testing and visual examination in accordance with the sampling method described on Plate 8, Key to Symbols.

The subsurface materials were visually classified in the field; the classifications were then checked by visual examination of samples in the laboratory. In addition to sample classification, the boring logs contain interpretation of where stratum changes or gradational changes occur between samples. The boring logs depict BAGG's interpretations of subsurface conditions only at the locations indicated on

Plate 2, Site Plan, and only on the dates noted on the logs. The boring logs are intended for use only in conjunction with this report, and only for the purposes outlined by this report.

The graphical representation of the materials encountered in the borings, and the results of laboratory tests, as well as explanatory/illustrative data, are attached as follows.

- Plate 5, Unified Soil Classification System, illustrates the general features of the soil classification system used on the boring logs.
- Plate 6, Soil Terminology, lists and describes the soil engineering terms used on the boring logs.
- Plate 7, Boring Log Notes, describes general and specific conditions that apply to the boring logs.
- Plate 8, Key to Symbols, describes various symbols used on the boring logs.
- Plates 9A thru 10B, Boring Logs, describe the subsurface materials encountered, show the depths and blow counts for the samples, and summarize the results of the strength tests, classification tests, and moisture-density data.
- Plate 11, Atterberg Limits, graphs and presents the Atterberg Limits test data performed to classify a selected soil sample obtained from the borings.
- Plate 12, Corrosivity Test Summary, presents the results of soil corrosivity tests on samples collected from the upper 4 feet of the site.

The moisture content and dry density of several undisturbed samples were measured to aid in correlating their engineering properties. Additionally, Atterberg Limits tests were performed on a clayey sample of the site materials to help define the expansion characteristics and aid in the soil classification. The results of our plasticity test, and moisture-density data are summarized on the boring logs, as well as the plates described above.

Additionally, one sample from the upper 4 feet of the site were sent to Cooper Testing Laboratory for corrosion analysis (see Plate 12).

6.0 GEOLOGY AND SEISMICITY

6.1 Regional Geology

A review of the "Geology of the Onshore Part of San Mateo County, California: Derived From the Digital Database Open-File 98-137" compiled by E.E. Brabb, R.W. Graymer, and D.L. Jones, 1998, indicates the surficial geology of the general site area consists of "Artificial fill (Historic)," described as:

af - "Artificial fill (Historic): Loose to very well consolidated gravel, sand, silt, clay, rock fragments, organic matter, and man-made debris in various combinations. Thickness is variable and may exceed 30 m in places. Some is compacted and quite firm, but fill made before 1965 is nearly everywhere not compacted and consists simply of dumped materials."

The artificial fill materials in the vicinity of the site were placed above a geologic unit described as "Bay mud (Holocene)," described as:

Qhbm - "Bay mud (Holocene): Water-saturated estuarine mud, predominantly gray, green and blue clay and silty clay underlying marshlands and tidal mud flats of San Francisco Bay, Pescadero, and Pacifica. The upper surface is covered with cordgrass (*Spartina* sp.) and pickleweed (*Salicornia* sp.). The mud also contains a few lenses of well-sorted, fine sand and silt, a few shelly layers (oysters), and peat. The mud interfingers with and grades into fine-grained deposits at the distal edge of Holocene fans, and was deposited during the post-Wisconsin rise in sea-level, about 12 ka to present (Imbrie and others, 1984). Mud varies in thickness from zero, at landward edge, to as much as 40 m near north County line."

According to a map depicting the "Thickness of Younger Bay Mud" compiled by James E Kahle and Harold B. Goldman, California Division of Mines and Geology, 1966. The thickness of the younger bay mud in the vicinity of the project site is less than 20 feet.

The Seismic Hazard Zone Report No. 111 for the Palo Alto 7.5-Minute Quadrangle, San Mateo and Santa Clara Counties, California (State of CA Department of Conservation), indicates the age of the surficial units in the site area range from Historic to Holocene.

Plate 3, Regional Geologic Map, shows the mapped regional geologic setting of the site and vicinity.

6.2 Seismicity

The site and the San Francisco Bay Area lie within the Coast Ranges geomorphic province, a series of discontinuous northwest trending mountain ranges, ridges, and intervening valleys characterized by complex folding and faulting. These faults are in a zone that extends eastward from off the Pacific Coast through the San Francisco Bay area to the western side of the Great Valley. This region has one of the highest rates of seismic moment release per square mile of any urban area in the United States. It is emerging from the stress shadow of the 1906 San Francisco Earthquake and future large earthquakes are considered a certainty.

Three of the northwest-trending major earthquake faults that comprise the San Andreas fault system and extend through the Bay Area include the San Andreas fault, the Hayward fault, and the Calaveras fault, respectively located approximately 7.9 km (4.9 miles) west-southwest, 22 km (13.7 miles) northeast, and 32.4 km (20.1 miles) east-northeast of the site. While the subject structure is not within any of an Alquist-Priolo Earthquake Fault Zones designated by the California Geological Survey, the San Andreas and Hayward faults are believed to be the principal seismic hazards in this area because of their activity rates and proximity to the site. The Working Group on California Earthquake Probabilities (2013) has estimated that the probability for a major earthquake (M_w 6.7 or greater) within 30 years on the nearby Peninsula section of the San Andreas fault is about 9 percent and about 33 percent for a similar earthquake located anywhere on the Northern San Andreas Fault. There is also a 32 percent chance a M_w 6.7 or greater will be located on the Hayward-Rodgers Creek fault. The Calaveras fault reportedly has a 25 percent probability of producing a magnitude 6.7 or greater earthquake within 30 years.

Other significant regional faults are of greater distance, or have lesser probabilities of a major earthquake in the next 30 years or so. Of particular importance are the San Gregorio and Monte Vista-Shannon faults, located approximately 20.9 km (13 miles) and 6.5 km (4 miles) west-southwest and southwest of the project site, respectively. The San Gregorio Fault reportedly has a 5.4 percent probability and the Monte Vista-Shannon fault reportedly has a 1.4 percent probability for a magnitude 6.7 or greater in 30 years. In addition, the Pilarcitos fault is mapped approximately 10.8 km (6.7 miles) southwest of the site. The Pilarcitos fault reportedly has a 0.5 percent probability for producing a magnitude 6.7 or greater in 30 years.

The predominant seismic hazard at this site will be from shaking caused by a large earthquake. ABAG (Association of Bay Area Governments) has published earthquake intensity maps that indicate the scenario earthquake listed for the entire San Andreas fault (1906-size earthquake) would produce a "violent" shaking intensity, and the Peninsula Segments of the San Andreas would produce a "very strong" shaking intensity at the site. The shaking resulting from a scenario earthquake on the Hayward fault will be "strong" in nature and the shaking resulting from a scenario earthquake on the Calaveras fault will be "moderate" to "strong" in nature. The shaking resulting from a scenario earthquake on the San Gregorio fault will be "very strong" in nature.

The distances to the major active faults from the project site and the estimated probability of a $M_w \ge 6.7$ within 30 years for each fault are listed on the following Table 1.

Significant Earthquake Scenarios				
Fault	Approximate Distance from Site (kilometers) ¹	Location with Respect to Site	Probability of M _w ≥6.7 within 30 Years ²	
San Andreas (Entire)	7.9	W-SW	33%	
San Andreas (Peninsula)	7.9	W-SW	9%	
San Gregorio	20.9	W-SW	5.4%	
Monte Vista-Shannon	6.5	SW	1.4%	
Hayward	22	NE	32%	
Calaveras	32.4	E-NE	25%	

Table 1

¹USGS Fault files - Google Earth

²Working Group on California Earthquake Probabilities, 2014.

The attached Plate 4, Regional Fault Map, depicts the major active fault locations with respect to the subject site.

7.0 SITE CONDITIONS

7.1 Surface Conditions

The borings were drilled in landscaped areas on the western portion of the existing yard area on the northern portion of the subject property. The landscaped areas are vegetated with a variety of groundcover, shrubs and small to large trees. Pervasive roots and rootlets were encountered within the upper 5 feet of the borings.

7.2 Subsurface Conditions

The soil borings drilled at the site for this investigation encountered predominantly clay-rich earth materials to depths of approximately 15 feet below the existing ground surface. The upper 2½ to 3 feet of the clayey soils encountered consisted of fill materials described as dark gray to gray-brown, very stiff, dry to slightly moist clay with a high plasticity and varying percentages of sand, gravel and organic debris. Below depths of 2½ to 3 feet the native clayey soils are described as blue-gray to dark blue-gray, soft to stiff, moist to very moist, and have a high plasticity. Predominantly granular soils consisting of clayey sand, silty sand and well-graded sand with silt were encountered below depths of approximately 15 feet below the existing ground surface. An Atterberg Limits test conducted on a sample of the upper clayey soils indicate they are highly expansive.

For more information on the subsurface materials, we refer you to Plates 9A thru 10B, Boring Logs

7.3 Fill Soils

Fill soils were encountered to depths of approximately 2½ to 3 feet below the existing ground surface in the borings drilled for this investigation. Fill materials may exist in the vicinity of existing or former utility trenches, in areas occupied by previously demolished structures, and in areas where grading may have been carried out as a part of previous developments.

7.4 Groundwater

Groundwater was encountered in Borings B-1 and B-2 at depths of approximately 13½ feet and 15¾ feet below the ground surface, respectively. Upon completion of the borings, the depth to groundwater in Borings B-1 and B-2 was measured to be approximately 10 feet and 6½ feet, respectively. Groundwater was encountered during the field exploration performed for the referenced May 4, 2016 report at depths of approximately 2 feet below the ground surface. Water has been previously observed to be standing above the ground surface at approximately elevation 7.5 feet NAVD 88.

According to the Seismic Hazard Zone Report for the Palo Alto 7.5 Minute Quadrangle, San Mateo and Santa Clara Counties, California (California Department of Conservation Seismic Hazard Zone Report 111, dated 2006) the depth to the historically highest groundwater level recorded in the vicinity of the project site is less than 10 feet.

It should be noted that groundwater levels typically fluctuate due to variations in rainfall, temperature, and other factors not evident at the time of exploration. In particular, the groundwater elevation may vary due to storm conditions, flow in Redwood Creek, and King Tides in the San Francisco Bay to the east. Due to the interbedded and interfingering nature of alluvial sediments, it is also likely that fluctuations in the groundwater level and/or perched water conditions may occur across the site.

8.0 GEOHAZARD EVALUATION

8.1 CBC 2013 Site Characterization

Based on the boring data, the site is a Class E (Soft Clay Soil) site, with an average N value in the top 100 feet less than 15 and an average undrained shear strength less than 1,000 pounds per square feet (psf).

Using the site coordinates of 37.4941° North Latitude and 122.2222° West Longitude, and the U.S. Seismic Design Maps by USGS (<u>http://earthquake.usgs.gov/designmaps/us/application.php</u>, Earthquake Hazards Program), earthquake ground motion parameters were computed in accordance with the 2013 California Building Code and are listed in the following table.

Table 2Parameters for Seismic Design

2013 CBC Site Parameter	Value
Site Latitude	37.4941° N
Site Longitude	122.222° W
Site Class, ASCE 7-10 Standard	Class E, Soft Clay Soil
Risk Category	1/11/111
Mapped Spectral Acceleration for Short Periods S _s	1.615g
Mapped Spectral Acceleration for 1-second Period S ₁	0.742g
Site Coefficient F _a	0.9
Site Coefficient F _v	2.4
Site-Modified Spectral Acceleration for short Periods S _{Ms}	1.453g
Site-Modified Spectral Acceleration for 1-second Period S _{M1}	1.781g
Design Spectral Acceleration for short Periods S _{Ds}	0.969g
Design Spectral Acceleration for 1-second Periods S _{D1}	1.187g

8.2 Liquefaction Potential

Soil liquefaction is a condition where saturated granular soils near the ground surface undergo a substantial loss of strength due to increased pore water pressure resulting from cyclic stress applications induced by earthquakes or other vibrations. In the process, the soil acquires mobility sufficient to permit both vertical and horizontal movements, if not confined. Soils most susceptible to liquefaction are loose, uniformly graded, fine-grained, sands, and loose silts with very low cohesion. It is generally acknowledged that the probability and consequences of liquefaction of soils at depths greater than approximately 50 feet below ground surface is generally very small. At the deeper depths, the greater overburden pressure and reduced level of shearing is usually sufficient to limit liquefaction.

Excessively loose granular soils were logged below depths of approximately 15½ and 14½ feet within Borings B-1 and B-2, respectively. In addition, groundwater was encountered at depths of approximately 13½ and 15½ in the borings drilled for this investigation. According to the Seismic Hazard Zone Report for the Palo Alto 7.5 Minute Quadrangle, San Mateo and Santa Clara Counties, California (California Department of Conservation Seismic Hazard Zone Report 111, dated 2006), the subject site lies within an area with historical occurrence of liquefaction, or local geological, geotechnical and ground water conditions indicate a potential for permanent ground displacements such that mitigation

as defined in Public Resources Code Section 2693(c) would be required. In addition, the Seismic Hazard Zone Report for the Palo Alto 7.5 Minute Quadrangle, San Mateo and Santa Clara Counties, California (California Department of Conservation Seismic Hazard Zone Report 111, dated 2006), indicates that the depth to the historically highest groundwater level recorded in the vicinity of the project site is less than 10 feet.

Due to the presence of loose to medium dense granular soils below the highest recorded groundwater table, it is our opinion that the potential of the site materials at the boring locations for seismically-induced liquefaction is considered high. Based on our understanding of current requirements, the proposed improvements are exempt from a requirement to analyze the liquefaction susceptibility of the site, because they are non-habitable structures. However, it should be noted that during a scenario seismic event, liquefaction related settlement may result in damage to the proposed structures.

8.3 Other Geologic Hazards

8.3.1 Potential for Fault-Related Ground Surface Rupture

The site is not situated within an Alquist-Priolo Earthquake Fault Zone as established by the CGS around faults that are considered active (CGS, 2000). In addition, no known active faults cross the site or its immediate area. Therefore, it is our opinion that the potential for fault-related ground surface rupture at the site is minimal.

8.3.2 Potential for Lateral Spreading

The site is located within an area that is subject to liquefaction. There are no open creek channels crossing or immediately bordering the site and there are no open slope faces within the site. Based on this information, it is our opinion that the potential for lateral spreading to occur within the site limits is very low to nil.

8.3.3 Potential for Slope Instability

The site area is essentially level, with gentle topographic relief. Therefore, the potential for slope instabilities to occur is considered nil.

8.3.4 Flooding Potential

According to the Federal Emergency Management Agency Flood Insurance Rate Map, Map number 06081C0301E, effective October 16, 2012, the site lies within an areas designated as "Zone X," indicating that the site lies outside the 0.2% annual chance floodplain. However, it is our opinion that flooding at the site may occur due to, among other phenomena, storm water, flows in Redwood Creek, King Tides, Tsunami, and earthquake related seiches.

9.0 DISCUSSION AND RECOMMENDATIONS

9.1 General

Based on the results of our subsurface exploration and the results of laboratory tests performed on the samples collected from the site, it is our opinion that the proposed project is feasible from a geotechnical engineering standpoint, provided the recommendations presented in this report are incorporated into the project design and construction. When the final project plans are available, they should be reviewed by this office prior to construction to confirm that the intent of our recommendations is reflected on the plans, and to confirm that our recommendations properly address the proposed project in its final form.

The two borings advanced in the vicinity of the proposed cabana and pet kennel documented clay-rich fill materials with a high plasticity to depths of approximately 2½ and 3 feet below the existing ground surface. The two borings drilled as part of this investigation also documented soft to stiff clayey soils with a high plasticity below the above mentioned fill materials. The boring data and laboratory test results indicate that the site materials generally have poor consistency. We therefore recommend supporting the proposed cabana and pet kennel on conventional mat slabs bearing on a minimum of 4 feet of imported granular fill materials as recommended in *Section 9.2.2. Criteria for Imported Fill* below, provided they are placed at 90% of the laboratory derived maximum dry density.

The site could experience very strong ground shaking from future earthquakes during the anticipated lifetime of the project. The intensity of the ground shaking will depend on the magnitude of the earthquake, distance to the epicenter, and the response characteristics of the on-site soils. While it is not possible to totally preclude damage to structures during major earthquakes, strict adherence to

good engineering design and construction practices will help reduce the risk of damage to the proposed improvements.

9.2 Site Grading

Detailed site grading plans were not available when this report was prepared, but it is our understanding that the site grading will consist of raising the ground surface to approximately 9 1/2 feet NAVD 88 and to place a surface that is relatively level and stable under static and unflooded conditions. Grading will generally consist of removal of the grass and concrete at the surface, and a portion of existing earth materials. These materials shall be exported from the site. Due to the soft condition of the underling material and the anticipated that load operations loads, the exposed subgrade need not be compacted prior to placing fill.

A geogrid material should be placed prior to placing fill. We recommend that clean crushed rock be used as fill.

9.2.1 Subgrade Preparation

The following procedures should be followed when preparing the improvement area.

- Strip and remove all bushes, vegetation, roots, organically contaminated topsoil, asphalt, concrete, abandoned underground utilities, and other debris from the site surface. Stockpile the stripping for disposal at an off-site location.
- Remove the existing earth materials to a minimum depth of 2 feet below the existing grade or the finished pad grade, whichever is deeper to a horizontal distance of 5 feet beyond the exterior foundation line. Due to the soft condition of the underling material and the anticipated that load operations loads, the exposed subgrade need not be compacted prior to placing fill.
- A geogrid material such as Tensar TriAx TX130S should be placed on the exposed subgrade prior to placing the crushed rock.
- Place 2 feet of 1-inch clean crushed rock as recommended in *Section 9.2.2 Criteria for Imported Fill* over the geogrid material. This material should be rolled from the crushed rock finished surface to a relatively firm condition.

• To aid in construction, non-expansive silty sand or clayey sand, with a plasticity index of 10 or less, may be used as compacted fill adjacent to and to the depth of structural concrete.

The geogrid material and the crushed rock should be approved by the Geotechnical Engineer before importing to the site. All aspects of site grading including clearing/stripping, demolition, pad preparation, and placement of fills or backfills should be performed under the observation of BAGG's field representatives.

It must be the Contractor's responsibility to select equipment and procedures that will accomplish the grading as described above. The Contractor's operations shall use light weight grading equipment that will not create a pumping or otherwise unstable condition. The Contractor must also organize his work in such a manner that one of our field representatives can observe and test the grading operations, including clearing, excavation, preparation of subgrades, placement of geogrids, as well as placement and compaction of fill and backfill.

9.2.2 Criteria for Imported Fill

Table 3Imported Aggregate Base Requirements		
Sieve Size Percent Passing		
1 1/2"	100	
1"	90-100	
3/4"	30-60	
1/2"	0-20	
No. 4	0-5	

Imported earth materials must consist of aggregate base material with the following requirements:

The material must have a Plasticity Index less than 10, and must be approved by the Geotechnical Engineer before importing to the site.

Other imported soil should consist of silty sand or clayey sand with low corrosive potential and a Plasticity Index less than 10.

9.2.3 Underground Utilities

Temporary shoring should be provided to protect workers in excavations deeper than 5 feet, and all work associated with trenching and shoring must conform to the State of California, Division of Industrial Safety requirements.

Trench backfill materials and compaction should conform to the requirements of the applicable agency. We recommend the following as a minimum:

- The backfill material should be compacted by mechanical means to 90 percent for the full depth of the trenches.
- Backfill shall consist of compacted granular fill materials as recommended in *Section 9.2.2. Criteria for Imported Fill.*
- Trench jetting should not be allowed.

9.2.4 Earthwork and Trench Backfill Observation and Testing

All aspects of site grading including clearing/stripping, equipment pad preparation, and placement of fills or backfills should be performed under full-time observation and testing by the Geotechnical Engineer.

9.2.5 Contractor's Responsibility

It must be the Contractor's responsibility to select equipment and procedures that will accomplish the grading as described above. The Contractor must also organize his work in such a manner that the geotechnical engineer can observe and test the grading operations, including clearing, excavation, compaction of fill and backfill, and compaction of subgrades.

9.3 Foundations

Provided subgrade preparation is carried out as outlined under the Site Grading section of this report, conventional spread footing foundations and/or a concrete mat foundation will provide satisfactory

support to the new pet kennel. The allowable bearing values for designing the footings will be 1,000 psf for dead and 1,500 psf for total design loads. The latter value may further be increased by one-third for short-term wind or seismic loads. Footings designed in this manner should be a minimum of 12 inches deep (below the lowest adjacent grade). The minimum width requirements for continuous and isolated footings are 1 and 2 feet, respectively.

If a mat foundation is used for the support of the proposed cabana and pet kennel, the load acting on the foundation should be limited to a uniform pressure of 1,000 psf or less. The design of a mat foundation may require a subgrade modulus; for this project we recommend a modulus of subgrade reaction of 150 psi/in.

The bottom of footing excavations and mat foundation should be firm, clean, and free of any loose or yielding earth materials, as described above, and should be observed by this office to verify the suitability of the soils exposed. If non-expansive soil is not placed in the upper portion of the fill, we anticipate the side forms may be needed to place concrete below grade.

9.4 Lateral Design

Lateral resistance may be obtained from passive earth pressures acting on the sides of foundation members which have been poured in neat excavations. The allowable passive resistance to wind or seismic loads can be taken as an equivalent fluid pressure of 350 pounds per cubic foot (triangular) excluding the upper 6 inches which should be ignored, unless the foundation is laterally confined by a slab or AC pavement. A frictional coefficient of 0.40 may be used between the bottom of footings or mat and reworked soils or aggregate base near the ground surface. Friction may be used simultaneously and without reduction in conjunction with the passive resistance.

9.5 Settlements

We have estimated that the total post-construction settlement of the new pet kennel consisting of conventional spread footings or a mat will be in the range of ¼ to ½ inch with the differential settlement comprising approximately one-half of the total settlements.

9.6 Concrete Pads

The mat foundation subgrades should be prepared as described under the *9.2 Site Grading* and *9.2.1* Subgrade Preparation sections of this report.

All concrete slabs should be appropriately reinforced with deformed bars. Experience suggests wire mesh contributes very little to the structural capacity of the slab, and more often than not, it ends up at the bottom of the slab rather than in the middle. The concrete slabs for the new cabana should be provided with a thickened edge, reinforced with deformed bars.

9.7 Drainage Requirements

Drainage measures to control and collect surface run-off should be considered an integral part of the proposed improvements.

9.8 Soil Corrosivity Evaluation

One sample of the subgrade soils from the upper 4 feet of the project site was tested for corrosion potential at Cooper Testing Labs. The results of chemical analyses, pH, and resistivity at 100% saturation are tabulated below and also attached on Plate 12, Corrosivity Test Summary.

Table 4Corrosion Test Results			
Analysis/Test B-1 @ 3½' Corrosivity Classifica			
Resistivity @ 100% saturation	430 Ohm-cm	Very Corrosive ¹	
рН	7.8	Negligible	
ORP (Redox)	515 mv	Moderately Corrosive ²	
Chloride	327 mg/kg	Negligible ³	
Sulfate	876 mg/kg	Moderately Corrosive ⁴	
Sulfide	Negative	Negligible	
Moisture Content @ Test (%)	37.7	N.A.	

¹ National Association of Corrosion Engineers (NACE) Corrosion Basics, Page 191.

² Standard Method 2580B.

³ For metals encased in concrete, extrapolated from CTM 372.

⁴ For metals encased in concrete, ACI-318, Building Code Requirements for Reinforced Concrete.

Electrical resistivity is one of the factors for the evaluation of the soil corrosivity. It is a measure of resistance to the flow of electrical current through the soil. Corrosion of buried metals is an electrochemical process in which the amount of metal loss due to corrosion is directly proportional to the flow of electrical current (Direct Current or DC) from metal to soil. As the resistivity of the soil decreases, the corrosivity increases. Based on the corrosion test results, the soils at the site should be considered very corrosive with respect to ferrous metals. A pH value of 7.8 indicates the soil is slightly alkali.

According to ACI 318, a sulfate concentration of less than 150 mg/kg is generally considered noncorrosive, whereas a concentration of up to 1,500 mg/kg is considered moderately corrosive with respect to reinforced concrete. Therefore, with the detected sulfate concentration of 876 mg/kg, the upper soils at the site would be moderately corrosive to reinforced concrete where the potential sulfate attack should be a consideration in the concrete mix design. A water soluble chloride content of less than 500 mg/kg is generally considered non-corrosive to reinforced concrete which is the case with the sample tested.

Corrosive effects to concrete and masonry materials will be moderate, while the effects would be noticeable with metals in direct contact with the soil subgrade. To minimize the corrosive degradation of any steel, ductile iron, or copper pipes over time, we recommend that these types of pipes be coated or polyethylene sleeved, or provided other forms of cathodic protection. The soils can degrade copper pipes over a short period of time; therefore, copper pipes should not be in contact with soil.

Soil conditions are not the only factors that may cause corrosion; design and construction practice may also be primary causes for failure. The above is intended to be only a preliminary screening of the nearsurface soils for corrosion as BAGG Engineers does not practice corrosion engineering. A review of plans and specifications for underground structures should be conducted by a qualified corrosion engineer prior to installation if a detailed evaluation is necessary.

9.9 Plan Review

It is recommended that the Geotechnical Engineer (BAGG Engineers) be retained to review the final grading and foundation plans for the new cabana and pet kennel and associated improvements. This review will be to assess general suitability of the earthwork and foundation recommendations contained in this report, and to verify the appropriate implementation of our recommendations into the project plans and specifications.

9.10 Observation and Testing

It is recommended that BAGG Engineers should be retained to provide observation and testing services during preparation of subgrades, and installation of foundations. This is to observe compliance with the design concept, specifications and recommendations, and will allow for design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction.

10.0 CLOSURE

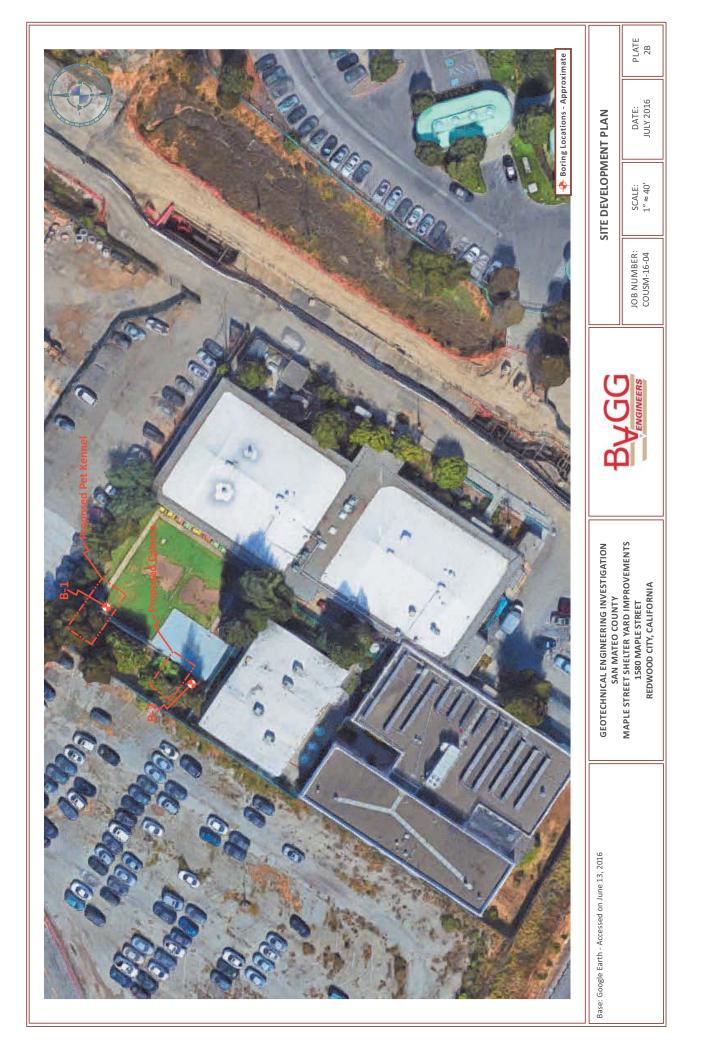
This report has been prepared in accordance with generally-accepted engineering practices for the strict use of San Mateo County Department of Public Works, Facilities Division and other professionals associated with the specific project described in this report. The recommendations presented in this report are based on our understanding of the proposed construction as described herein, and upon soil conditions encountered in the two exploratory borings drilled for this investigation.

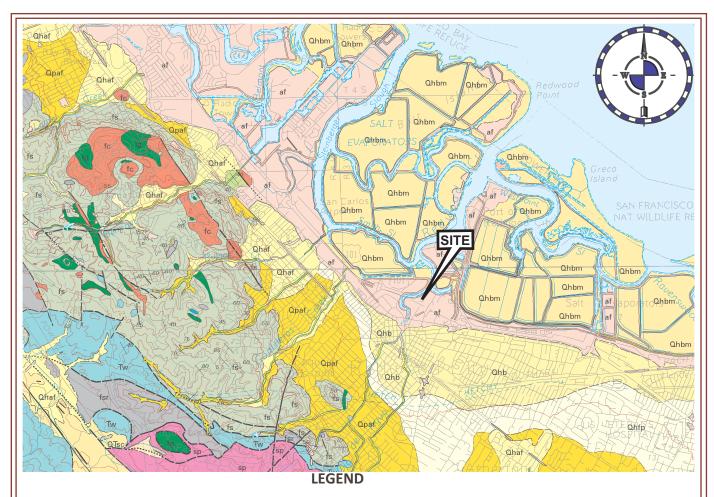
The conclusions and recommendations contained in this report are based on subsurface conditions revealed by widely-spaced borings. It is not uncommon for unanticipated conditions to be encountered during site grading and/or foundation installation, and it is not possible for all such variations to be found by a field exploration program appropriate for this type of project. The recommendations contained in this report are therefore contingent upon the review of the final foundation plans, and upon geotechnical observation and testing by this office of all pertinent aspects of construction, including demolition, placement of fills or backfills, subgrade preparation, and foundation installation.

Soil conditions and standards of practice change with time. Therefore, we should be consulted to update this report, if the construction does not commence within 18 months from the date that this report is submitted. Additionally, the recommendations of this report are only valid for the proposed development as described herein. If the proposed project is modified, our recommendations should be reviewed and approved or modified by this office in writing.

The following plates are attached and complete this report:

Plate 1	Vicinity Map
Plate 2A	Site Plan
Plate 2B	Site Development Plan
Plate 3	Regional Geology Map
Plate 4	Regional Fault Map
Plate 5	Unified Soil Classification System
Plate 6	Soil Terminology
Plate 7	Boring Log Notes
Plate 8	Key to Symbols
Plates 9A thru 10B	Boring Logs
Plate 11	Plasticity Data
Plate 12	Corrosivity Tests Summary


ASFE document titled "Important Information About Your Geotechnical Engineering Report"



af Artificial fill (Historic) - Loose to very well consolidated gravel, sand, silt, clay, rock fragments, organic matter, and man-made debris in various combinations. Thickness is variable and may exceed 30m in places. Some is compacted and quite firm, but fill made before 1965 is nearly everywhere not compacted and consists simply of dumped materials.

alf Artificial levee fill (Historic) - Man-made deposit of various materials and ages, forming artificial levees as much as 6.5 m high. Some are compacted and quite firm, but fills made before 1965 are almost everywhere not compacted and consist simply of dumped materials. The distribution of levee fill conforms to levees shown on the most recent U.S. Geological Survey 7.5-minute quadrangle maps.

Qhbm Bay mud (Holocene) – Water-saturated estuarine mud, predominantly gray, green and blue clay and silty clay underlying marshlands and tidal mud flats of San Francisco Bay, Pescadero, and Pacifica. The upper surface is covered with cordgrass (*Spartina* sp.) and pickleweed (*Salicornia* sp.). The mud also contains a few lenses of well-sorted, fine sand and silt, a few shelly layers (oysters), and peat. The mud interfingers with and grades into fine-grained deposits at the distal edge of Holocene fans, and was deposited during the post-Wisconsin rise in sea-level, about 12 ka to present (Imbrie and others, 1984). Mud varies in thickness from zero, at landward edge, to as much as 40 m near north county line.

Qhb Basin deposits (Holocene) – Very fine silty clay to clay deposits occupying flat-floored basins at the distal edge of alluvial fans adjacent to the bay mud (Qhbm). Also contains unconsolidated, locally organic, plastic silt and silty clay deposited in very flat valley floors.

Qhfp Floodplain deposits (Holocene) – Medium to dark gray, dense, sandy to silty clay. Lenses of coarser material (silt, sand, and pebbles) may be locally present. Flood plain deposits usually occur between levee deposits (QhI) and basin deposits (Qhb).

Qhaf Alluvial fan and fluvial deposits (Holocene) – Alluvial fan deposits are brown or tan, medium dense to dense, gravelly sand or sandy gravel that generally grades upward to sandy or silty clay. Near the distal fan edges, the fluvial deposits are typically brown, never reddish, medium dense sand that fines upward to sandy or silty clay.

Qpaf Alluvial fan and fluvial deposits (Pleistocene) – Brown dense gravelly and clayey sand or clayey gravel that fines upward to sandy clay. These deposits display variable sorting and are located along most stream channels in the county. All Qpaf deposits can be related to modern stream courses. They are distinguished from younger alluvial fans and fluvial deposits by higher topographic position, greater degree of dissection, and stronger soil profile development. They are less permeable than Holocene deposits, and locally contain fresh water mollusks and extinct Pleistocene vertebrate fossils. They are overlain by Holocene deposits on lower parts of the alluvial plain, and incised by channels that are partly filled with Holocene alluvium on higher parts of the alluvial plain. Maximum thickness is unknown but at least 50 m.

Reference: Geology of the Onshore Part of San Mateo County, California: Derived From the Digital Database Open-File 98-137, by E.E. Brabb, R.W. Graymer, and D.L. Jones, 1998.

GEOTECHNICAL ENGINEERING INVESTIGATION SAN MATEO COUNTY	REGIONAL GEOLOGY MAP		
MAPLE STREET SHELTER YARD IMPROVEMENTS	DATE:	JOB NUMBER:	PLATE
1580 MAPLE STREET	JULY 2016	500 HOMBER	
REDWOOD CITY, CALIFORNIA	JULI 2010	COUSM-16-04	5

Less than $50\%~\mbox{Fines}^*$

GROUP SYMBOLS	ILLUSTRATIVE GROUP NAMES	MAJOR DIVISIONS	
GW	Well graded gravel Well graded gravel with sand	GRAVELS	
GP	Poorly graded gravel Poorly graded gravel with sand	More than half of coarse	
GM	Silty gravel Silty gravel with sand	fraction is larger than No. 4	
GC	Clayey gravel Clayey gravel with sand	sieve size	
sw	Well graded sand Well graded sand with gravel	SANDS	
SP	Poorly graded sand Poorly graded sand with gravel	More than half of coarse	
SM	Silty sand Silty sand with gravel	fraction is smaller than No. 4 sieve	
SC	Clayey sand Clayey sand with gravel	size	

NOTE: Coarse-grained soils receive dual symbols if:

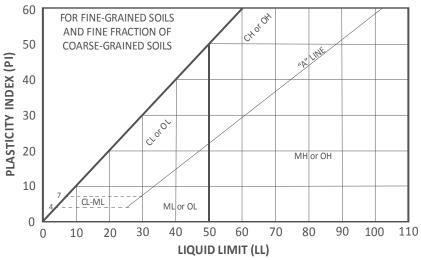
(1) their fines are CL-ML (e.g. SC-SM or GC-GM) or

(2) they contain 5-12% fines (e.g. SW-SM, GP-GC, etc.)

SOIL SIZES

COMPONENT	SIZE RANGE
BOULDERS	ABOVE 12 in.
COBBLES	3 in. to 12 in.
GRAVEL	No. 4 to 3 in.
Coarse	¾ in to 3 in.
Fine	No. 4 to ¾ in.
SAND	No. 200 to No.4
Coarse	No. 10 to No. 4
Medium	No. 40 to No. 10
Fine	No. 200 to No. 40
*FINES:	BELOW No. 200

NOTE: Classification is based on the portion of a sample that passes the 3-inch sieve.


FINE-GRAINED SOILS

MORE THAN 50% FINES*

GROUP SYMBOLS	ILLUSTRATIVE GROUP NAMES	MAJOR DIVISIONS	
CL	Lean clay Sandy lean clay with gravel		
ML	Silt Sandy silt with gravel	SILTS AND CLAYS liquid limit	
OL	Organic clay Sandy organic clay with gravel	less than 50	
СН	Fat clay Sandy fat clay with gravel	SILTS AND	
МН	Elastic silt Sandy elastic silt with gravel	CLAYS liquid limit more than	
ОН	Organic clay Sandy organic clay with gravel	50	
РТ	Peat Highly organic silt	HIGHLY ORGANIC SOIL	

NOTE: Fine-grained soils receive dual symbols if their limits in the hatched zone on the Plasticity Chart(L-M)

PLASTICITY CHART

Reference: ASTM D 2487-06, Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System).

GENERAL NOTES: The tables list 30 out of a possible 110 Group Names, all of which are assigned to unique proportions of constituent soils. Flow charts in ASTM D 2487-06 aid assignment of the Group Names. Some general rules for fine grained soils are: less than 15% sand or gravel is not mentioned; 15% to 25% sand or gravel is termed "with sand" or "with gravel", and 30% to 49% sand or gravel is termed "sandy" or "gravelly". Some general rules for coarse-grained soils are: uniformly-graded or gap-graded soils are "Poorly" graded (SP or GP); 15% or more sand or gravel is termed "with sand" or "with gravel", 15% to 25% clay and silt is termed clayey and silty and any cobbles or boulders are termed "with cobbles" or "with boulders".

SOIL TYP		Ref 1) particles of rock that will not pass a 12-inch screen.											
Boulders	:												
Cobbles:			of rock that will pass a 12-inch screen, but not a 3-inch sieve.										
Gravel:		particles o	ock that will pass a 3-inch sieve, but not a #4 sieve.										
Sand:			f rock that will pass a #4 sieve,										
Silt:					plastic, and that exhibits little or no strength								
•		when dry.											
Claye	soil that will pass a #200 sieve, that can be made to exhibit plasticity (putty-like properties) within a range o												
-													
	contents, and that exhibits considerable strength when dry.												
MOISTUI													
Moisture			an observational term; dry, m										
Moisture	e Conter	it:	the weight of water in a samp	le divided by the weight	t of dry soil in the soil sample, expressed as a								
Dry Density:			percentage.										
Dry Dens	sity:		the pounds of dry soil in a cubic foot of soil.										
DESCRIP	TORS OF		NCY (Ref 3)										
Liquid Limit: the water content at which a soil that will pass a #40 sieve is on the boundary between exhibiting liquid and													
·			aracteristics. The consistency for		,								
Plastic Li													
T lastic El		solid characteristics. The consistency feels like stiff putty.											
Diastisity													
Plasticity	muex.			nu the plastic limit, i.e. t	he range in water contents over which the soli is								
		in a plastio	c state.										
WEASUR			Y OF COHESIVE SOILS (CLAYS)										
Very Soft		Soft	N=0-1*	C=0-250 psf	Squeezes between fingers								
			N=2-4	C=250-500 psf	Easily molded by finger pressure								
	Medi	um Stiff	N=5-8	C=500-1000 psf	Molded by strong finger pressure								
	Stiff		N=9-15	C=1000-2000 ps	f Dented by strong finger pressure								
	Very	stiff	N=16-30	C=2000-4000 ps	f Dented slightly by finger pressure								
	Hard		N>30	C>4000 psf	Dented slightly by a pencil point								
	*N=b	ows per for	ot in the Standard Penetration .	Test In cohesive soils w	with the 3-inch-diameter ring sampler, 140-pound								
			ne blow count by 1.2 to get N (I		with the 5 men dameter ring sumpler, 140 pound								
	weig	nit, uivide ti	ie blow coulit by 1.2 to get in (i	nel 4).									
MEACUD					UTS) (Pofe 2.9.2)								
IVIEASUR			NSITY OF GRANULAR SOILS (G N=0-4**	RD=0-30	Easily push a ½-inch reinforcing rod by hand								
	Very L												
	Loose		N=5-10	RD=30-50	Push a ½-inch reinforcing rod by hand								
	Medi		N=11-30	RD=50-70	Easily drive a ½-inch reinforcing rod								
	Dense		N=31-50	RD=70-90	Drive a ½-inch reinforcing rod 1 foot								
Very I		Dense	N>50	RD=90-100	Drive a 1/2-inch reinforcing rod a few inches								
	**N=	Blows per fo	oot in the Standard Penetration	Test. In granular soils,	with the 3-inch-diameter ring sampler, 140-								
	pound	d weight, o	divide the blow count by 2 to g	et N (Ref 4).									
XXXXXXXXX	•	<u> </u>			****								
Ref 1:	Ref 1: ASTM Designation: D 2487-06, Standard Classification of Soils for Engineering Purposes (Unified Soil Classification												
	System).												
Ref 2:	-		Peck, Ralph B., Soil Mechanics	in Engineering Practice	e, John Wiley & Sons, New York, 2nd Ed., 1967, pp.								
	30, 341	, and 347.											
Ref 3:	Sowers, George F., Introductory Soil Mechanics and Foundations: Geotechnical Engineering, Macmillan Publishing												
	Company, New York, 4th Ed., 1979, pp. 80, 81, and 312.												
Ref 4:	Ref 4: Lowe, John III, and Zaccheo, Phillip F., Subsurface Explorations and Sampling, Chapter 1 in "Foundation Engineering												
	Handbook," Hsai-Yang Fang, Editor, Van Nostrand Reinhold Company, New York, 2 nd Ed, 1991, p. 39.												
	Hanabook, Hisar rang rang, Eartor, van Nostrana Kenniola Company, New TOLK, Z – Eu, 1551, p. 55.												

GENERAL NOTES FOR BORING LOGS:

The boring logs are intended for use only in conjunction with the text, and for only the purposes the text outlines for our services. The Plate "Soil Terminology" defines common terms used on the boring logs.

The plate "Unified Soil Classification System," illustrates the method used to classify the soils. The soils were visually classified in the field; the classifications were modified by visual examination of samples in the laboratory, supported, where indicated on the logs, by tests of liquid limit, plasticity index, and/or gradation. In addition to the interpretations for sample classification, there are interpretations of where stratum changes occur between samples, where gradational changes substantively occur, and where minor changes within a stratum are significant enough to log.

There may be variations in subsurface conditions between borings. Soil characteristics change with variations in moisture content, with exchange of ions, with loosening and densifying, and for other reasons. Groundwater levels change with seasons, with pumping, from leaks, and for other reasons. Thus boring logs depict interpretations of subsurface conditions only at the locations indicated, and only on the date(s) noted.

SPECIAL FIELD NOTES FOR THIS REPORT:

- 1. The borings were drilled on June 17, 2016, with a portable "minuteman" drilling rig using solid flight augers. The borings were sealed with cement grout immediately after the last soil sample was collected.
- 2. The boring locations were approximately located by using a tape measure and/or pacing from known points on the site, as shown on Plate 2, Site Plan.
- 3. The soils' Group Names [e.g. SANDY LEAN CLAY] and Group Symbols [e.g. (CL)] were determined or estimated per ASTM D 2487-06, Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System, see Plate 5). Other soil engineering terms used on the boring log are defined on Plate 6, Soil Terminology.
- 4. The "Blow Count" Column on the boring logs indicates the number of blows required to drive the sampler below the bottom of the boring, and the blow counts are given for each 6 inches of sampler penetration. The samples from the boring were driven with a 140-pound hammer.
- 5. Groundwater was encountered in the borings drilled for this investigation as indicated in the boring logs.

Symbol Description

Strata symbols

Sandy fat clay

High plasticity (fat) clay

Sandy high plasticity (fat) clay

Clayey sand

Silty sand

914) I J R 3 16 2 14

Well graded sand with silt and gravel

Misc. Symbols

Water level at completion of boring

Boring continues

Water first encountered during drilling

Soil Samplers

2.375" ID by 3" OD, split-barrel sampler driven w/ 140-pound hammer falling 30 inches

Modified California Sampler:

No recovery

Standard Penetration Test: 1 3/8" ID by 2" OD, split-spoon sampler driven with 140-pound hammer falling 30" (ASTM D 1586-99)

KEY TO SYMBOLS

Symbol Description Line Types Denotes a sudden, or well identified strata change Denotes a gradual, or poorly identified strata change Laboratory Data Below the ground surface bgs LL Liquid Limit (ASTM D4318). ΡI Plasticity Index (ASTM D4318). Corrosion Corrosion tests including: 100% Saturated Resistivity (ASTM G57) pH (ASTM G51) Chloride (ASTM D4327) Sulfate (ASTM D4327) Redox Potential (ASTM G200)

BORING LOG

Boring No. B-1 Page 1 of 2

JOB NAME: San Mateo County Maple St. Shelter *CLIENT:* San Mateo County *LOCATION:* 1580 Maple Street, Redwood City, CA *DRILLER:* Access Soil Drilling, Inc. *DRILL METHOD:* Minuteman- $3\frac{1}{2}$ " Soild Flight Augers

JOB NO.: COUSM-16-04 DATE DRILLED: 6/17/2016 ELEVATION: 9± feet LOGGED BY: EW CHECKED BY:

Type of Strength Test	Test Surcharge Pressure, psf	Test Water Content, %	Shear Strength, psf	In-Situ Water Content, %	In-Situ Dry Unit Weight, pcf	Depth, ft.	Soil Symbols, Samplers and Blow Counts	USCS	Description	Remarks
				37.7 56.1 107.8 29.6	81.4 65.1 38.8 90.1		01 01 H	СН	FAT CLAY WITH SAND: dark gray to gray brown, very stiff, dry to slightly moist, well graded sand, trace fine gravel, trace organics Concrete fragment FAT CLAY : Blue-gray with yellow-brown and red-brown mottling, stiff, moist (Bay Mud) thin organic-rich layer very moist very moist dark blue-gray, stiff, moist	Fill Native Corrosion Package

BORING LOG

Boring No. B-1 Page 2 of 2

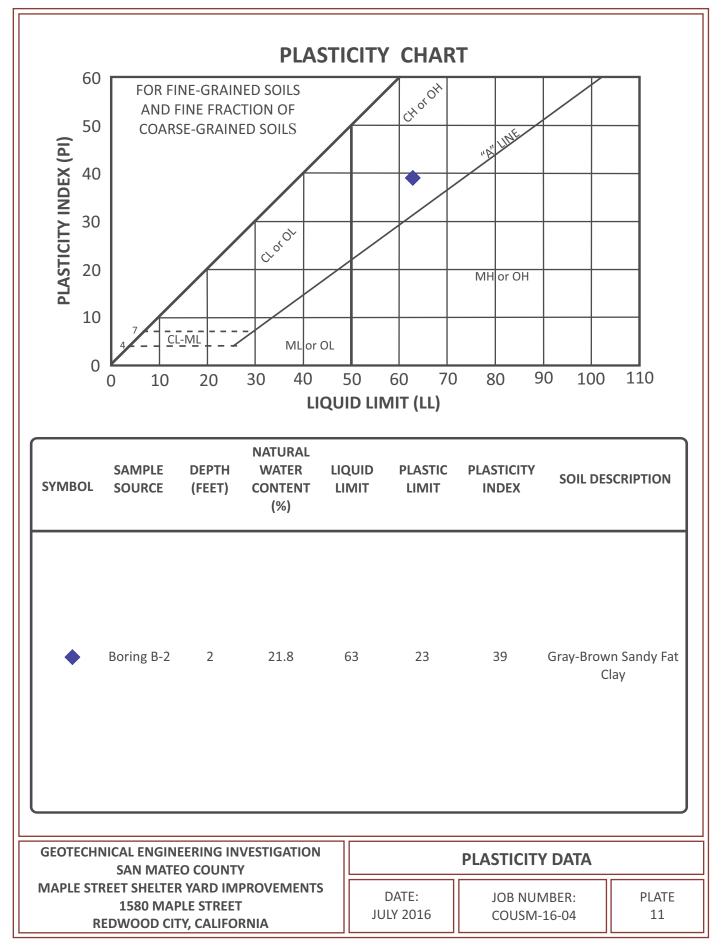
J	JOB NAME: San Mateo County Maple St. Shelter							JOB NO.: COUSN	/I -16-04	
Type of Strength Test	Test Surcharge Pressure, psf	Test Water Content, %	Shear Strength, psf	In-Situ Water Content, %	In-Situ Dry Unit Weight, pcf	Depth, ft.	Soil Symbols, Samplers and Blow Counts	USCS	Description	Remarks
								CH SC SM SM	SANDY FAT CLAY : Olive- gray, medium stiff, very moist, fine sand, trace medium to coarse sand CLAYEY SAND: Olive-gray, very moist, fine sand SILTY SAND: Olive-gray, loose to medium dense, wet, fine sand (poorly graded), contains very thin beds of clayey sand loose, fine sand, trace medium to coarse sand, trace fine gravel WELL GRADED SAND WITH SILT: Olive-gray to gray, wet, fine to medium sand, few coarse sand The boring was terminated at approximately 20 feet bgs. Groundwater was initially encountered at approximately $13\frac{1}{2}$ feet bgs and rose to 10 feet bgs upon completion of the boring. Immediately after the last sample was retrieved, the borehole was backfilled with neat cement grout.	

BORING LOG

Boring No. B-2 Page 1 of 2

JOB NAME: San Mateo County Maple St. Shelter *CLIENT:* San Mateo County *LOCATION:* 1580 Maple Street, Redwood City, CA *DRILLER:* Access Soil Drilling, Inc. *DRILL METHOD:* Minuteman-3.5" Solid Flight Augers

JOB NO.: COUSM-16-04 DATE DRILLED: 6/17/2016 ELEVATION: 9± feet LOGGED BY: EW CHECKED BY:


Type of Strength Test	Test Surcharge Pressure, psf	Test Water Content, %	Shear Strength, psf	In-Situ Water Content, %	In-Situ Dry Unit Weight, pcf	Depth, ft.	Soil Symbols, Samplers and Blow Counts	USCS	Description	Remarks
				21.8	94.3	0	11 9 12	СН	FAT CLAY WITH SAND : Dark gray to gray brown, very stiff, dry to slightly moist, fine sand, trace medium to coarse sand, trace rootlets and organic debris	Fill PI=39 LL=63
				22.1	89.8	- - 4 -	899	СН	FAT CLAY: Blue-gray with yellow-brown and orange- brown oxidation, stiff, moist, trace rootlets and organic debris	Native
				94.6	43.3	6 8	2 1 1		Dark blue-gray, soft, very moist, trace organics	
				30.3 27.4	88.7 95.2		3 5 7		Blue-gray, stiff, moist, trace sand	

BORING LOG

Boring No. B-2 Page 2 of 2

JOB I	JOB NAME: San Mateo County Maple St. Shelter							JOB NO.: COUSM-16-04		
Type of Strength Test Test Surcharge	Test Water Content, %	Shear Strength, psf	In-Situ Water Content, %	In-Situ Dry Unit Weight, pcf	Depth, ft.	Soil Symbols, Samplers and Blow Counts	USCS	Description	Remarks	
Tr St Tr		SI PS	C	In W	<u> </u>	5 9 111 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	CH SC SW- SM	SANDY FAT CLAY: Olive- gray and blue-gray, stiff, very moist, fine sand, trace medium to coarse sand CLAYEY SAND: olive-gray and blue-gray, loose to medium dense, very moist, fine sand, few medium sand, trace coarse sand and fine gravel WELL GRADED SAND WITH SILT: Olive-gray, medium dense, wet, fine to medium sand, few coarse sand, trace fine gravel The boring was terminated at approximately 20 feet bgs. Groundwater was initially encountered at approximately		
					22 24 26			encountered at approximately $15\frac{3}{4}$ feet bgs and rose to $6\frac{1}{2}$ feet bgs upon completion of the boring. Immediately after the last sample was retrieved, the borehole was backfilled with neat cement grout.		

				soll Visual Description		Gray CLAY w/ Sand						MARY	PLATE 12
	PJ cousm-16-04			by Lead %	- AS	Negative 37.7						CORROSIVITY TEST SUMMARY	JOB NUMBER COUSM-16-04
nary	PJ Checked: Proj. No:	H ^u		E _H (mv)	51 ASTM G200 Te	7.8 515 22						CORRO	DATE JULY 2016
Corrosivity Tests Summary	Tested By: P		%		327 ASTM D4327	876 0.0876 7.							
Corrosivit	6/28/2016 Maple St	Chlor	mg/kg		22	430 327						NOIL	
	Date: Project:	Resistivity @ 15 5 °C (Ohm-cm)	Min		Cal 643							GEOTECHNICAL ENGINEERING INVESTIGATION SAN MATEO COUNTY	MAPLE STREET SHELLER TARU IMPROVEMENTS 1580 MAPLE STREET REDWOOD CITY, CALIFORNIA
	011-755 BAGG		Ÿ		å	3.5						IICAL ENGINEERING INV SAN MATEO COUNTY	IREET STIELLER TARU INIPROV 1580 MAPLE STREET REDWOOD CITY, CALIFORNIA
COPE	CTL # 011 Client:	Remarks: Samula Location or ID			g Samp	B-1 2						GEOTECHN	MAPLE STA RE

July 22, 2016 BAGG Job No. COUSM-16-04

County of San Mateo Department of Public Works Facilities Division 555 County Center, 5th Floor Redwood City, CA 94063

ATTENTION: Doug Konig, Project Manager

RECOMMENDED SLAB SUPPORT

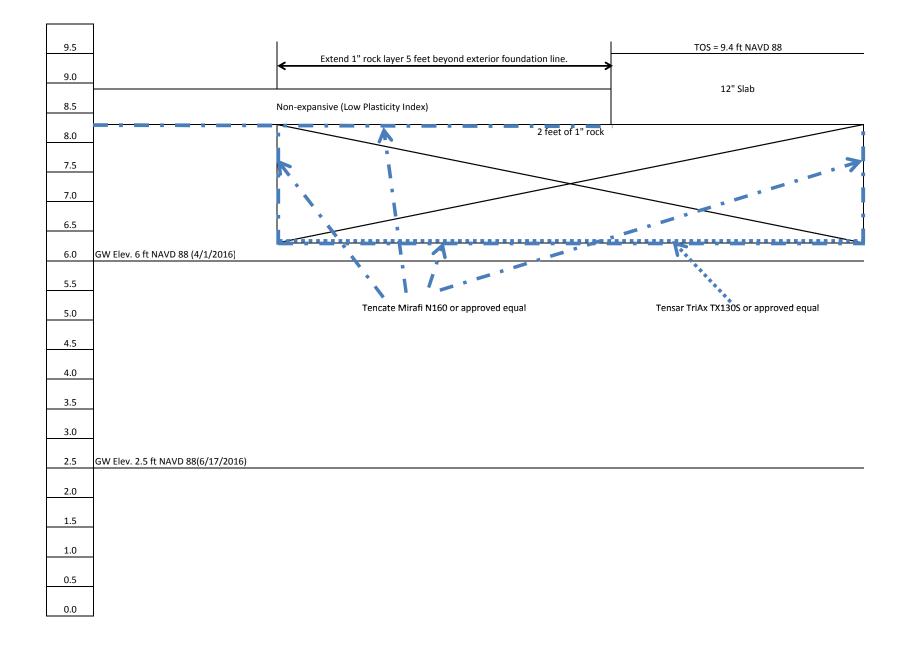
Proposed Cabana and Pet Kennel San Mateo County Maple Street Shelter 1580 Maple Street Redwood City, California

Dear Mr. Konig:

As requested, I have prepared a schematic that details the installation of the proposed slab, the geogrid, recommended rock, non-expansive soil, and geo-fabric. The geo-fabric should be non-woven material, Tencate Mirafi N160 or approved equal.

The geo-grid material should be placed over the geo-fabric material.

These opinions, conclusions and recommendations are subject to the limitations presented in our report for the project dated July 19, 2016.


We thank you for the opportunity to perform these services. Please do not hesitate to contact us, should you have any questions or comments.

Very truly yours, **BAGG Engineers**

Anthony N. Lusich, PE. GE, F.ASCI

Supervisorial Engineer

Pre-Renovation Hazardous Materials Survey LifeMoves Shelter 1580 Maple Street, Redwood City, California

Prepared for:

Department of Public Works 555 County Center, 5th Floor Redwood City, CA 94063

Prepared By: Vista Environmental Consulting 2984 Teagarden Street San Leandro, CA 94577

> July 14, 2016 Project No. 161101003

TABLE OF CONTENTS

EXECUTIVE SUMMARY

		PAGE
1.	INTRODUCTION	1
2.	METHODOLOGY	1
3.	RESULTS	5
4.	RECOMMENDATIONS	11
5.	LIMITATIONS & EXCLUSIONS	15

APPENDICES

A. BUILDING DATA

Hazardous Materials Summary
Asbestos Sampling Inventory
Sample and Asbestos-Containing Materials Locations Drawings
Asbestos Analytical Reports
Lead XRF Sequential Reports
Photo Documentation

EXECUTIVE SUMMARY

Vista Environmental Consulting (Vista) performed a pre-renovation hazardous materials survey at the LifeMoves Maple Street Shelter located at 1580 Maple Street, Redwood City, California. The survey was performed to identify and sample accessible suspect asbestos-containing materials, to identify representative building components for the presence of lead-containing surface coatings/lead-based paints (LCSC/LBP), and to visually identify universal waste (UW) materials, polychlorinated biphenyls (PCBs) containing devices, devices which contain ozone depleting chemicals, and other hazardous materials. Vista performed the hazardous materials survey on June 24 and 27, 2016.

The results of the survey indicate that the following hazardous materials may be in the path of construction areas:

MATERIAL	DESCRIPTION	LOCATION	ESTIMATED QUANTITY
Wallboard/Joint Compound	White/White	Throughout	42,149 SF
Texture Coat	White, Medium	 Kitchen 17, Janitor 16, Supply 15, Storage 15- A, Laundry 14, Corridor 3, Storage 13, Hobby Room19, Dining Room 18, Bedroom, Visitor Restroom 21, Visitor Coats 22, Inmate Restroom 23, Men Transitional Housing 25, Kitchen 33, Corridor 24-A, Corridor 24-B, Corridor 24-C, Toilet Men 38-M, Shower Men 36-M, Toilet Women 38-W, Shower Women 36-M, Emergency Office 34, Laundry 39, Program Conference 1-B, Office 4 	26,155 SF
Vinyl Floor Tile/Mastic	9"x9" Tan, White Streaks/Black (Under Carpet)	Throught, Except (Kitchen 17, Janitor 16, Supply 15, Storage 15-A, Laundry 14, Corridor 3, Storage 13,Vistor Restroom 21, Visitor Coats 22, Inmate Restroom 23, Kitchen 33, Corridor 24-A, Corridor 24-B, Corridor 24- C, Toilet Men 38-M, Shower Men 36-M, Toilet Women 38-W, Shower Women 36-M, Emergency Office 34, Laundry 39, Program Conference 1-B, Office 4, Lounge 30, Dining Hall)	9,222 SF

Asbestos

MATERIAL	DESCRIPTION	LOCATION	ESTIMATED QUANTITY
Mastic	Dark Brown, Wall Panel	Dinning Room 15, Bedroom, Locker Dining Room 18, Hobby Room 19, Corridor 24-A, Corridor 24-B, Corridor 24-C, Men Transitional Housing 25, Men Transitional Housing 27, Women Transitional Housing 28, Women Transitional Housing 29, Lounge 30, Women Emergency Housing 31, Men Emergency Housing 32-A	3, 511SF
Mastic/Grout	Tan/White, 4" Tan Ceramic Wall	Visitor Restroom 21, Inmate Restroom23, Toilet Men 38-M, Shower Men 36-M, Toilet Women 38-W, Shower Women 36-M	288 SF
Dampener	Gray, 2' x 1' Vent opening Attic Fire Wall	Attic	10SF
Window Panel	Gray, Cement Panels Between Metal	Program Conference 1B, Exterior, Storefront	176 SF

Lead-Based Paint and Materials

Room	Component	Substrate	Color	Condition	Pb	Units
Roof	Pipe	Metal	White	Intact	80.6	mg/cm ²
Roof	Pipe	Metal	White	Intact	75.7	mg/cm ²
Inmate Restroom	Wall	Ceramic	Yellow	Intact	7.1	mg/cm ²
Inmate Restroom	Wall	Ceramic	Yellow	Intact	7.5	mg/cm ²
Inmate Restroom	Sink	Ceramic	White	Intact	2.1	mg/cm ²
Common Area	Drain	Metal	Gold	Intact	14	mg/cm ²
Women's Restroom	Wall	Ceramic	Yellow	Intact	7.6	mg/cm ²
Women's Restroom	Stall	Metal	Brown	Intact	2.8	mg/cm ²
Women's Restroom	Floor Drain	Metal	Gray	Intact	3.1	mg/cm ²
Men's Restroom	Wall	Ceramic	Yellow	Intact	6.6	mg/cm ²
Men's Restroom	Urinal	Ceramic	White	Intact	1.3	mg/cm ²
Outside	Floor	Asphalt	Yellow	Intact	4.2	mg/cm ²

All remaining tested materials had lead concentrations in excess of the level for compliance with trigger activities, as defined in 8 CCR 1532.1.

MATERIAL	CONTAMINANT	ESTIMATED QUANTITY
Other Non-Incandescent Lamps	Universal Waste	654
Batteries (Back-up)	Universal Waste	17

MATERIAL	CONTAMINANT	ESTIMATED QUANTITY
Thermostat Triggers (Mercury)	Universal Waste	1
Metal Halide/ Sodium	Universal Waste	13
Light Fixture Ballasts	Polychlorinated Biphenyls	334
HVAC	Ozone Depleting Chemicals	9
Fridge/Water Coolers	Ozone Depleting Chemicals	14
Ozone Gas Generator	Ozone Depleting Chemicals	1
Smoke Detectors	Low-Level Radiation	36
Exit Signs	Low-Level Radiation	18
Roof Vents	Lead	21

The Hazardous Materials Summary, Asbestos Sampling Inventory, Sample and Asbestos-Containing Materials Location Drawings, Asbestos Analytical Reports, Lead XRF Sequential Reports, and Photo Documentation can be found in *Appendix A – Building Data*.

The documents found in the appendices are not stand-alone documents and should not be separated from this report. Quantities and locations listed in the tables are order of magnitude estimates and are not to be used for bidding purposes. It is the sole responsibility of the contractor to verify quantities and locations of hazardous materials in the path of construction through site visits and contractual bid set documents, including, but not limited to all specifications, drawings, and addenda. Any discrepancies between the contractual bid set documentation and site visits must be submitted in writing to the Owner or Owner's representative, prior to bidding.

BAAQMD classifications are based upon the material's condition at the time of the survey or as rendered as a result of standard manual removal/demolition techniques. The use of "mechanical means", non-standard or other aggressive removal/demolition techniques may result in a different classification.

All asbestos (>0.1%) disturbance and/or removal operations must be conducted by a Cal/OSHA registered and State licensed asbestos removal contractor. All disturbance and/or abatement operations should be under the direction of a California Certified Asbestos Consultant.

Should the removal of identified regulated asbestos-containing materials (RACM) involve at least 100 square feet or 100 linear feet per project site, per year, then notification to the Bay Area Air Quality Management District (BAAQMD) and Cal/OSHA must be accomplished prior to the initiation of such activities.

All activities involving potential and identified lead-containing surfaces should be conducted in accordance with California Health & Safety Code sections 17920.10 and 10525, 10525.7, Title 8, California Code of Regulations (CCR), Section 1532.1.

In addition, all removal activities involving identified lead-based paints (LBP) must be conducted in accordance with Title 17, CCR, Division 1, Chapter 8, Sections 35001 through 36100, which prescribes the use of California Department of Public Health (CDPH) certified workers, work practices, and other requirements.

Written notification to Cal/OSHA must be accomplished should LBP activities involve equal to or more than 100 square feet or 100 linear feet of removal in accordance with the requirements of 8 CCR 1532.1.

Any welding, cutting or heating of metal surfaces containing surface coatings should be conducted in accordance with 8 CCR 1537 Welding, Cutting, and Heating of Coated Metals, which require surfaces covered with toxic preservatives, and in enclosed areas, be stripped of all toxic coatings for a distance of at least 4 inches, in all directions, from the area of heat application prior to the initiation of such heat application, or 8 CCR 1536 Ventilation Requirements for Welding, Brazing, and Cutting.

All potential and identified Universal Waste materials (UW) impacted by the work should be removed and recycled or disposed of in accordance with the UW guidelines established by the DTSC, as stated in 22 CCR Sections 66261.9 and 66273.1 thru 66273.90.

All ballasts must be visually inspected prior to disposal to determine if they contain PCB's. Those ballasts marked No PCB's or PCB Free can be considered as such and should be treated as UW - electronic waste. All PCB-containing devices, including, but not limited to ballasts should be removed or have the oils removed and properly handled, collected, stored, transported and recycled or disposed of by an approved recycling or disposal facility in accordance with the requirements of Title 22 CCR 67426.1.

Devices containing ozone depleting chemicals, petroleum or other chemicals, should be collected, waste characterized, disposed or recycled according to California rules and regulations.

Should materials similar to those identified in this report, or if other forms of suspect hazardous materials are encountered, contractors should be instructed to immediately cease work activities which may initiate an exposure episode, and notify the appropriate management personnel.

Report prepared for the Company by:

Christopher R. Burns Senior Project Manager CAC #92-0224 LRCIA #663

1.0 INTRODUCTION

Vista Environmental Consulting (Vista) performed a pre-renovation hazardous materials survey at the LifeMoves Maple Street Shelter located at 1580 Maple Street, Redwood City, California for the County of San Mateo.

The purpose of this survey was to identify hazardous building materials so they could be removed; waste characterized, and properly disposed of prior to being impacted by renovation activities. The data provided in this report can assist all parties involved in this project make informed decisions regarding regulatory compliance and the health and safety of their employees. This survey included the following:

- Visible and accessible suspect asbestos-containing materials (ACM) were assessed and sampled to determine asbestos content.
- Representative painted and coated building components were assessed and categorized based upon standard selective demolition practices and sampled for lead content which can be used in preliminary waste stream characterization estimates and for worker protection.
- Visible and accessible materials commonly found in buildings which can potentially have hazardous properties that are regulated were assessed, but not sampled. These materials include, but are not limited to:
 - Universal Waste (UW) materials, such as non-incandescent lamps, batteries, mercury-containing devices, and electronic waste; Batteries include, but are not limited to those found in exit signs, emergency lights, fire alarm systems, and back-up power systems.
 - Polychlorinated biphenyls (PCBs) containing devices such as lamp ballasts, wettype transformers, and hydraulic systems;
 - Devices which may contain ozone depleting chemicals, such as Heating, Ventilation and Air Conditioning (HVAC) systems, refrigerators, freezers, fire suppression systems and water coolers/fountains.

2.0 METHODOLOGY

Vista performed the hazardous materials survey on June 24 and 27, 2016. The asbestos survey was conducted by Christopher Elliott a State of California Division of Occupational Safety and Health (Cal/OSHA) Certified Asbestos Consultant (CAC #16-5606). The lead screening survey was conducted by Christopher Elliott, who has a Lead-Related Construction Certificate as an

Inspector/Assessor (LRCIA #18373) issued by the State of California Department of Public Health (CDPH). Christopher Troyer, a Cal/OSHA Certified Site Surveillance Technician (CSST #13-5037) and CDPH Sampling Technician (#26444) assisted on the survey.

The survey was not intrusive in nature, and did not include access of areas and sampling of materials which would have required demolition or large scale destructive testing. Roof sampling was performed using 3" stainless steel cores down to the first hard substrate. Vista's intent was to perform a thorough survey and made a good faith effort to access all building materials down to the structural components and/or interstitial spaces. Vista made every effort to access these areas, however because non-destructive techniques had to be employed since staff were still occupying the buildings, not all interstitial spaces could be accessed. Energized mechanical equipment was deemed inaccessible at the time of this survey.

Quantities and locations are based upon areas that were accessed. Materials similar to those in this report may be present in areas which were not accessed.

Different types of fire doors were checked as part of this survey, however not all doors were checked, and/or sampled. Vista recommends that all doors are checked prior to demolition for suspect asbestos-containing materials not addressed in this report.

Sub-surface areas were not included as part of this survey, hence no excavation was conducted to discover buried asbestos utility piping concealed below the surface. The project site was not assessed for the presence of Naturally Occurring Asbestos in the soil.

2.1 Asbestos

The asbestos survey was performed generally in accordance with the AHERA protocol (40 CFR Part 763, Subpart E). Visual identification was performed by assessing visible and accessible structural, architectural, and mechanical components for the presence of suspect ACM at the Project Site.

This limited ACM survey was conducted in the following manner:

Suspect ACM was categorized into homogeneous materials. A homogeneous material is defined as being a surfacing material, thermal system insulation, or miscellaneous

material which is uniform in color and texture. It may also be additionally subcategorized using the date of installation, when available.

- A sampling scheme was developed based upon the location and quantity of the suspect homogeneous ACM. A rough order of magnitude estimate of each suspect homogenous ACM was calculated and recorded for future reference. A sampling scheme, including a specific number of samples per suspect homogeneous ACM, was calculated prior to sampling.
- Sampling guidelines established by the United States Environmental Protection Agency (USEPA) were utilized for sampling each suspected homogeneous ACM. Methods described in Appendix K of 8 California Code of Regulation (CCR) 1529 were utilized in the collection of each suspect homogeneous ACM sample.
- Trained California asbestos certified personnel, using appropriate sampling tools and leak-tight closable bags, collected building materials that were suspected to contain ACM.
- Each suspect ACM sample was collected and sealed in its container and appropriately labeled with a unique sample identification number and recorded on an asbestos bulk sampling log. Each log contains a chain-of-custody to assure the proper transition of the samples from Vista to the analytical laboratory.
- Sampling tools were decontaminated, by using a clean wet cloth, between the collection of each suspect sample to prevent the possibility of cross contamination of subsequent suspect ACM samples.

Suspect ACM samples were delivered, under proper chain-of-custody protocol, to Forensic Analytical Laboratories in Hayward, California. Forensic Analytical Laboratories is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) and the California Environmental Laboratory Accreditation Program (Cal-ELAP). The samples were submitted for analysis by Polarized Light Microscopy (PLM) utilizing dispersion staining techniques in accordance with the EPA's "Method for the Determination of Asbestos in Bulk Building Materials" U.S. EPA/600/R-93/116, Visual Area Estimate, dated July 1993 and adopted by the NVLAP as Test Method Code 18/A01.

Samples of wallboard/joint compound were further analyzed by 400-point bulk asbestos point count utilizing National Emission Standards for Hazardous Air Pollutants (NESHAP) Final Rule, 40 CFR, Part 61 methodology.

2.2 Lead

Vista's lead construction screening survey used an X-Ray Fluorescence (XRF) direct read spectrum analyzer device to take readings of representative painted and coated surfaces for evaluation of lead levels for worker health and safety and preliminary waste characterization prior to construction activities. The device was a NITON Corporation XRF Spectrum Analyzer, Model XLp- 300 A. This device is a solid-state detector optimized for lead L-shell and K-shell X-ray detection and uses a 40 mCi 109Cd (1,480 Mbq) isotope for an excitation source.

This survey was a limited screening of paint for the purpose of characterizing the lead content in paint and coatings likely to be disturbed during work activities. For this purpose, XRF analysis was used to screen for lead levels and provides results that are generally representative of typical conditions but are not inclusive of all painted/coated surfaces present at the Project Site. This survey was not a surface by surface inspection as outlined in the U.S. Department of Housing and Urban Development (HUD) Guidelines For the Evaluation and Control of Lead-Based Paint Hazards in Housing pursuant to Title X of the Housing and Community Development Act of 1992. This analytical data can be helpful in evaluation of lead-related environmental risks in general, but cannot be used to calculate worker exposures and is not a substitute for employee exposure monitoring or waste stream sampling.

Lead-Based Paint (LBP) is defined by CDPH as any paint containing lead levels exceeding 0.5 wt % (or 5000 parts per million) via paint chip sampling or 1.0 milligrams per centimeter squared (mg/cm²) or greater via X-Ray Fluorescence (XRF) direct read instrument sampling. Cal/OSHA rules apply to "any detectable concentration of lead" without a specified detection level.

2.3 Devices with Potential Hazardous Materials

Devices with potential hazardous materials were visually identified during the survey walk through and their quantities were estimated and recorded. No attempt was made to disassemble devices or sample suspect materials within the devices. For example, fluorescent light fixtures must be presumed to contain Universal Waste lamps and ballasts which contain PCB oil or are electronic waste, pending removal and disassembly of each unit to determine explicit product specific information that proves otherwise.

3.0 RESULTS

Asbestos

The results of the bulk samples collected for asbestos, and analyzed by PLM Methodology, indicate that detectable concentrations of asbestos are present in the following materials:

HOMO. ID	MATERIAL	DESCRIPTION	LOCATION	CAL/OSHA CLASS	BAAQMD CATEGORY
Ι	Wallboard/Joint Compound	White/White	Throughout	Class II	NA (Composite < 1% by Point Count, Wallboard = ND, Joint Compound = 2%)
L	Texture Coat	White, Medium	Kitchens, Supply, Laundry, Storage, Corridors, Dining Room, Visitor RR, Visitor Coats, Inmate RR, Program Conference 1B, Emergency Office, Men & Women Toilets	Class II	Friable (RACM when Removed)
w	Vinyl Floor Tile/Mastic	9"x9" Tan, White Streaks/Black (Under Carpet)	Storage, Conference 10, Hobby Room, Day Room, Dining Room, Staff 7, Secretary, Office 5, Transitional Housing Office, Men #2 Transitional Housing, Men & Women Emergency Housing, Women #4 Transitional Housing	Class II	Category I - Non- Friable
x	Mastic	Dark Brown, Wall Panel	Hobby Room, Men #2 Transitional Housing, Corridor 24, Toilet Women, Men & Women Emergency Housing, Women #4 Transitional Housing	Class II	Category I - Non- Friable
Y	Mastic/Grout	Tan/White, 4" Tan Ceramic Wall	Visitor RR 21, Inmate RR 23,	Class II	Category I - Non- Friable
NN	Dampener	Attic	Attic	Class II	Friable (RACM when Removed)
J3	Window Panel	Gray, Cement Panels Between Metal	Windows of Program Conference 1B and Storefront	Class II	Category II - Non- Friable

BAAQMD classifications are based upon the material's condition at the time of the survey or as rendered as a result of standard manual removal/demolition techniques. The use of "mechanical

means", non-standard or other aggressive removal/demolition techniques may result in a different classification.

The results of the bulk samples collected for asbestos, and analyzed by PLM, indicate that detectable concentrations of asbestos *are not present* in the following tested materials:

HOMOGENEOUS ID	MATERIAL	DESCRIPTION	# OF SAMPLES
А	Roof	White, Asphalt	2
В	Roof	Roof Black, Tar & Gravel	
С	Mechanical Curb	White, Asphalt	2
D	Parapet/Mechanical Curb	Black, Asphalt	2
Е	Mastic	Gray/Black	2
F	Paint	Silver, Mechanical Curb Skylight	2
G	Mastic	White/Black, Mechanical Curb Edges	2
Н	Sealant	Gray, HVAC	2
J	Paint/Skimcoat	White/White	7
К	Paint	Gray, Floor	2
М	Basecove/Mastic	6" Brown/Tan	2
N	Mastic	Yellow, Wall Panel	2
0	Basecove/Mastic	6" Blue/White	2
Р	Vinyl Floor Tile/Mastic	12"x12" White, Beige Streaks/Black & Yellow	1
Q	Ceiling Tile/Mastic	12"x12" White Pinhole Fissure/Brown	3
R	Vinyl Floor Tile/Mastic	12"x12" Beige, Tan Streaks/Yellow	1

Headquarters Fire Station

HOMOGENEOUS ID	MATERIAL	DESCRIPTION	# OF SAMPLES
S	Vinyl Floor Tile/Mastic	12"x12" White, Off-White Streaks/Yellow	1
Т	Vinyl Floor Tile/Mastic	12"x12" White/Black	1
U	Mastic	Brown, Carpet 2'x2' Gray Green	1
V	Basecove/Mastic	4" Blue/Brown	1
Z	Vinyl Floor Tile/Mastic	12"x12" White, Gray, Beige Streaks/Yellow	1
AA	Vinyl Floor Tile/Mastic	12"x12" Gray, White Streaks/Yellow	1
BB	Wallpaper	Tan, Fine Texture Pattern	1
CC	Mastic	Yellow, Green Carpet	1
DD	Basecove/Mastic	4" Red/Brown, White	1
EE	Vinyl Floor Tile/Mastic	2'x2' Stone/Yellow	1
FF	Mastic/Levelling Compound	Black, Residual	2
GG	Texture Coat	White, Small	5
НН	Vinyl Floor Tile/Mastic	12"x12" Blue/Black, Yellow	1
Ш	Vinyl Sheet Flooring/Mastic	White, Stone Pattern/Tan, Gray	1
IJ	Plaster	White, Ceiling	5
КК	Basecove/Mastic	6" Gray/Tan	1
LL	Basecove/Mastic	6" Black/White	1
ММ	Mastic/Levelling Compound	Yellow/White, Tan Carpet	1
00	Vinyl Floor Tile/Mastic	Wood Grain/Black	1
РР	Vinyl Floor Tile/Mastic	12"x12" Gray/Black	1
QQ	Vinyl Floor Tile/Mastic	12"x12" Green/Black	1

HOMOGENEOUS ID	MATERIAL	DESCRIPTION	# OF SAMPLES
RR	Grout/Mortar	White/Gray	1
SS	Mastic	Mastic Tan Mirror	
TT	Paint/Stucco/Vapor Barrier	White/Gray/Black	2
UU	Paint/Concrete	White/Gray	2
vv	Paint	Brown, Beige Wood	1
ww	Roofing	Tan, 3-Tab Asphalt	1
XX	Mastic	Black, Gray	2
YY	Sidewalk, Patio	Gray, Concrete	2
ZZ	Foundation	Gray, Concrete	2
A3	Insulation	Brown, Paper, Metal Fire Door	1
B3	Sealant	White, Black, Exterior Concrete Columns	2
C3	Window Putty	Gray, Exterior Windows	2
D3	Sealant	White, Gray Store Front	2
E3	Sealant	Black, Bu Shelter	1
F3	Sealant	White, Wall Flashing	1
G3	Concrete Foundation	Gray, Bus Platform	1
НЗ	Wall Panel	Beige, White	2
13	Insulation	Brown, Wood Door	1
К3	Fire Sealant	Red	1
L3	Roof	Tan, 3-Tab Asphalt, Shed 1	1
M3	Paint	Beige, Wood, Shed 1	1

HOMOGENEOUS ID	MATERIAL	DESCRIPTION	# OF SAMPLES
N3	Roof	Black, 3-Tab Asphalt, Shed 2	1
O3	Sealant	White, HVAC Duct, Attic	2
Р3	Flex Joint	Black, HVAC, Attic	1
Q3	Insulation	White, Elbow, Attic	3
R3	Insulation	White, Blown-in Insulation, Attic	1
S3	Insulation	4" OD White/Yellow	1
Т3	Paint	Beige, Wood, Shed 2	1

Lead

For purposes of this survey, and in accordance with Title 8 CCR, Section 1532.1 (8 CCR 1532.1) and Title 17 of the California Code of Regulations, Section 35001 et. seq. the bulk paint chip sample or XRF direct read instrument results were interpreted as follows:

- Lead-based paints (LBP) are present when bulk paint chip samples revealed a lead concentration of ≥5,000 milligrams per kilogram (mg/kg) or parts per million (ppm), 0.5% by weight (wt%) or ≥1.0 milligrams per centimeter squared (mg/cm²) via XRF direct read instrument sampling.
- Lead-containing paints are present when bulk paint chip samples revealed a lead concentration of <5,000 mg/kg or 0.5 wt% down to the analytical detection limit of the analysis, or <1.0 milligrams per centimeter squared (mg/cm²) via XRF direct read instrument sampling down to the detection limit of the device.
- 3. "No lead detected" was determined when bulk paint chip samples did not reveal a lead concentration above the analytical detection limit of the laboratory or direct read instrument sampling device.

The bulk paint chip results or XRF direct read instrument results for this survey indicated that the following building components and respective surface coatings have lead concentrations defining them as LBP, in accordance with Title 17 of the California Code of Regulations, Section 35001 et. seq.:

Room	Component	Substrate	Color	Condition	Pb	Units
Roof	Pipe	Metal	White	Intact	80.6	mg/cm ²
Roof	Pipe	Metal	White	Intact	75.7	mg/cm ²
Inmate Restroom	Wall	Ceramic	Yellow	Intact	7.1	mg/cm ²
Inmate Restroom	Wall	Ceramic	Yellow	Intact	7.5	mg/cm ²
Inmate Restroom	Sink	Ceramic	White	Intact	2.1	mg/cm ²
Common Area	Drain	Metal	Gold	Intact	14	mg/cm ²
Women's Restroom	Wall	Ceramic	Yellow	Intact	7.6	mg/cm ²
Women's Restroom	Stall	Metal	Brown	Intact	2.8	mg/cm ²
Women's Restroom	Floor Drain	Metal	Gray	Intact	3.1	mg/cm ²
Men's Restroom	Wall	Ceramic	Yellow	Intact	6.6	mg/cm ²
Men's Restroom	Urinal	Ceramic	White	Intact	1.3	mg/cm ²
Outside	Floor	Asphalt	Yellow	Intact	4.2	mg/cm ²

All remaining tested materials had lead concentrations in excess of the level for compliance with trigger activities, as defined in 8 CCR 1532.1.

Devices with Potential Hazardous Materials

Devices with potential hazardous materials were identified at the Project Site. They are as follows:

MATERIAL	CONTAMINANT	ESTIMATED QUANTITY
Other Non-Incandescent Lamps	Universal Waste	654
Batteries (Back-up)	Universal Waste	17
Thermostat Triggers (Mercury)	Universal Waste	1
Light Fixture Ballasts	Polychlorinated Biphenyls	334
HVAC	Ozone Depleting Chemicals	б
Halon in Fire Suppressant System	Ozone Depleting Chemicals	13
Fridge/Water Coolers	Ozone Depleting Chemicals	14
Ozone Gas Generator	Ozone Depleting Chemicals	1
Smoke Detectors	Low-Level Radiation	36
Exit Signs	Low-Level Radiation	18
Roof Vents	Lead	21

The Hazardous Materials Summary, Asbestos Sampling Inventory, Sample and Asbestos-Containing Materials Location Drawings, Asbestos Analytical Reports, and the Lead XRF Sequential Reports, and Photo Documentation can be found in *Appendix A – Building Data*.

The documents found in the appendices are not stand-alone documents and should not be separated from this report. Quantities and locations listed in the tables are order of magnitude estimates and are not to be used for bidding purposes. It is the sole responsibility of the contractor to verify quantities and locations of hazardous materials in the path of construction through site visits and contractual bid set documents, including, but not limited to all specifications, drawings, and addenda. Any discrepancies between the contractual bid set documentation and site visits must be submitted in writing to the Owner or Owner's representative, prior to bidding.

BAAQMD classifications are based upon the material's condition at the time of the survey or as rendered as a result of standard manual removal/demolition techniques. The use of "mechanical means", non-standard or other aggressive removal/demolition techniques may result in a different classification.

4.0 **RECOMMENDATIONS**

4.1 Asbestos

Work performed during any activities that disturb the asbestos-containing materials identified in this report must be done in compliance with the most recent edition of all applicable federal, state, and local regulations, standards, and codes governing abatement, transport, and disposal of asbestos-containing materials. These include, but are not limited to, the following:

- CCR, Title 8, Chapter 3.2, Subchapter 2, Article 2.5 Registration Asbestos-Related Work Sections 341.6 through 341.14
- CCR, Title 8, Section 1529 Asbestos in the Construction Industry
- BAAQMD Regulation 11, Hazardous Pollutants, Rule 2, Asbestos Demolition, Renovation and Manufacturing
- 40 CFR Part 763 Subpart E, Asbestos Containing Materials in Schools (AHERA)

Materials encountered in the building that are not part of this report must be properly sampled for the content of asbestos or assumed to be asbestos containing prior to any disturbance.

Prior to activities which will disturb identified or assumed asbestos, a Cal/OSHA registered and California licensed asbestos contractor must be utilized for abatement of asbestos that will be impacted. Vista recommends that all abatement operations be conducted under the direction of a California Certified Asbestos Consultant.

4.2 *Lead*

At present there is no state or federal regulation requiring mandatory lead removal or abatement prior to disturbance of building materials with identified lead paint or coatings. However, there are applicable Cal/OSHA worker protection and training requirements, Cal/EPA waste disposal requirements, CDPH requirements for public and residential buildings, and SB 460 lead hazard regulations that apply to lead-related construction activities, abatement activities and their associated wastes. The following is a brief discussion and summary of applicable regulatory requirements:

◆ Cal/OSHA: Title 8, California Code of Regulation (CCR), Section 1532.1 (8 CCR 1532.1) governs occupational exposure to lead. This regulation requires that prior to initiation of certain activities, referred to as "trigger tasks", workers must be trained, medically evaluated, and properly fitted with respiratory protection, and protective clothing until statistically reliable personal eight-hour time weighted average (TWA) results indicate lead exposure levels below the Personal Exposure Limit (PEL) for each unique task which disturbs lead-based and lead-containing coatings. This process is known as a Negative Exposure Assessment or NEA.

If the result of the exposure assessment is above the Action Level (AL) additional monitoring is required and if the result is above the PEL additional exposure monitoring, worker protection (including respirator protection and PPE), training and medical requirements apply. However even where the NEA criteria is met, certain hazard communication training and work practice controls still apply where lead is disturbed. "Trigger tasks" are tasks that are assumed to exceed the PEL pending an exposure assessment and they encompass the majority of construction activities that disturb surface coatings. Examples of "trigger" tasks range from manual paint scraping as a lower expected exposure up to hot work and abrasive blasting as the highest expected exposures, and include any non-listed task that the employer determines may potentially expose employees to lead levels above the AL.

"OSHA does not consider any method that relies solely on the analysis of bulk materials or surface content of lead (or other toxic material) to be acceptable for safely predicting employee exposure to airborne contaminates. Without air monitoring results or without the benefit of historical or objective data (including air sampling which clearly demonstrates that the employee can not be exposed above the action level during any process, operation, or activity) the analysis of bulk or surface samples can not be used to determine employee exposure."- OSHA Standard Interpretation May 8, 2000.

OSHA states that these rules apply to "any detectable concentration of lead" without a specified detection level. Due to the Consumer Product Safety Commission currently allowing paint to contain up to 90 parts per million (ppm) or 0.009 wt% of lead, the variation of lead content due to aging and weathering, and the variation of detection limits associated with analysis of bulk materials, such as paint chips and surface content analysis via XRF, it is recommended that all painted or coated surfaces be treated as potentially containing lead. Positive analytical results by either method can be used to indicate that detectable lead is present but negative results cannot be interpreted as conclusively demonstrating the absence of lead.

Analytical data from analysis of bulk materials or surface content of lead can be helpful in evaluation of lead-related environmental risks in general but cannot be used to calculate worker exposures and are not a substitute for employee exposure monitoring. As a result of the above, any employee that works around potential lead-based or lead-containing coatings must have HAZCOM training and personal exposure air monitoring is additionally required for employees that disturb such coatings. Significant additional certification, notification, and work practices are required for materials found to be lead-based.

Any welding, cutting or heating of metal surfaces containing surface coatings should be conducted in accordance with 29 CFR 1926.354 and 8 CCR 1537. These regulations require surfaces covered with toxic preservatives, and in enclosed areas, be stripped of all toxic coatings for a distance of at least 4 inches, in all directions, from the area of heat application prior to the initiation of such heat application.

◆ Cal/EPA through the Division of Toxic Substance Control (DTSC) regulates disposal of lead hazardous waste (22 CCR Division 4.5, Minimum Standards for Management of Hazardous and Extremely Hazardous Wastes). DTSC has issued guidance indicating that architectural debris with intact lead paint is normally expected to be handled as general construction waste. However, waste stream segregation and analysis is still required for all lead painted or coated

debris regardless if the paint or coating is intact on a building component or not. The resulting wastes may be hazardous under California and federal RCRA standards for lead and therefore require proper handling, packaging, labeling, and transportation under a proper manifest to a permitted hazardous waste storage, treatment and disposal facility.

◆ **CDPH**: The Department of Public Health (CDPH) has specific requirements (Title 17 Sections 35001 thru 36100 et. al.) for hazard assessment and work in public or residential structures in regards to lead-based paint. These regulations require special certifications, work practices, and notification for such activities.

• Senate Bill 460 (SB 460): An act to amend Section 1941.1 of the Civil Code, and to amend Sections 17961, 17980, and 124130 of, and to add Sections 17920.10, 105251, 105252, 105253, 105254, 105255, 105256, and 105257 to, the Health and Safety Code, relating to lead abatement. This bill allows for fines and criminal penalties to be levied on any person who is found to have performed lead abatement without containment or created a measurable "lead hazard" based upon current CDPH standards. A "lead hazard" means deteriorated lead-based paint, lead contaminated dust, lead contaminated soil, disturbing lead-based paint or presumed lead-based paint without containment, or any other nuisance which may result in persistent and quantifiable lead exposure.

Vista recommends that all parties that come into contact with paint and dust that has detectable lead content follow all applicable federal, state and local regulations relating to employee health and safety and proper disposal of generated wastes.

4.3 Devices with Potential Hazardous Materials

All potential and identified Universal Waste materials (UW) impacted by the work should be removed and recycled or disposed of in accordance with the UW guidelines established by the DTSC, as stated in 22 CCR Sections 66261.9 and 66273.1 thru 66273.90.

Vista's limited visual survey indicated that light fixtures with ballasts that may contain PCB oil are present. However, due to the limited nature of the random spot checks, Vista recommends that all ballasts be visually inspected prior to disposal to determine if they contain PCB's. Those ballasts marked No PCB's or PCB Free can be considered as such as should be treated as UW - electronic waste.

All PCB-containing devices, including, but not limited to ballasts and transformers should be removed or have the oils removed and properly handled, collected, stored, transported and recycled or disposed of by an approved recycling or disposal facility in accordance with the requirements of Title 22 CCR 67426.1.

Devices containing ozone depleting chemicals, petroleum or other chemicals, should be collected, waste characterized, disposed or recycled according to California rules and regulations.

If the underground storage tanks still exist, the closure of them requires following all local rules and regulations for obtaining permits, performing soil sampling and obtaining closure certification on the tank system.

All personnel who perform hazardous materials work must be trained and qualified to do so. They must also follow the most current OSHA regulations including 29 CFR 1910.120 and 8 CCR 5192, Hazardous Waste Operations and Emergency Response, as well as other applicable federal, state and local laws and regulations.

5.0 LIMITATIONS & EXCLUSIONS

The following areas were not accessible for sampling during the survey field work:

- Add-On Storage Adjacent Supply 15
- Add-On Storage Adjacent Supply 13
- Staff Toilet 12
- Generator & Generator Shed
- Water Heaters 35
- Shed #2

Quantities and locations are based upon areas that were accessed. Materials similar those in this report may be present in areas which were not accessed. Because of this, Vista recommends including line item pricing, allowances, and/or additive/deductive wording to bid sheets for unforeseen conditions.

All material quantities reported herein are rough order of magnitude estimates and should not be used for bidding purposes. All contractors are responsible for accurately determining quantities and locations of materials identified in this report.

The survey performed was limited to representative rooms/areas, was not intrusive in nature, and did not include access of areas and sampling of materials which would have required demolition or large scale destructive testing. Roof sampling was performed using 3" stainless steel cores down to the first hard substrate. Vista made a good faith effort based on accepted industry standards to access all areas in order to assess their potential for having hazardous materials, however additional materials such as vinyl floor tile or mastics may be under carpeting or other floor finishes and fixtures, piping and elbows may be inside wall or ceiling voids, and additional layers of roofing may be under the first layer of hard substrate. Vista made every effort to access these areas, however because non-destructive techniques had to be employed since staff were still using the buildings, not all interstitial spaces could be accessed.

Respectfully Submitted, Vista Environmental Consulting

Reviewed and Approved

KT

Charles R. Bove Principal CAC #92-0160

Christopher R. Burns Senior Project Manager CAC #92-0224 LRCIA #663

APPENDIX A - BUILDING DATA

LIFEMOVES SHELTER 1580 MAPLE STREET, REDWOOD CITY, CA HAZARDOUS MATERIALS SUMMARY

Asbestos

HOMO. ID	MATERIAL	DESCRIPTION	LOCATION	CAL/OSHA CLASS	BAAQMD CATEGORY	ESTIMATED QUANTITY
I	Wallboard/Joint Compound	White/White	Throughout	Class II	NA (Composite < 1% by Point Count, Wallboard = ND, Joint Compound = 2%)	42,149 SF
L	Texture Coat	White, Medium	Kitchens, Supply, Laundry, Storage, Corridors, Dining Room, Visitor RR, Visitor Coats, Inmate RR, Program Conference 1B, Emergency Office, Men & Women Toilets	Class II	Friable (RACM when Removed)	26,155 SF
w	Vinyl Floor Tile/Mastic	9"x9" Tan, White Streaks/Black (Under Carpet)	Storage, Conference 10, Hobby Room, Day Room, Dining Room, Staff 7, Secretary, Office 5, Transitional Housing Office, Men #2 Transitional Housing, Men & Women Emergency Housing, Women #4 Transitional Housing	Class II	Category I - Non-Friable	9,222 SF
X	Mastic	Dark Brown, Wall Panel	Hobby Room, Men #2 Transitional Housing, Corridor 24, Toilet Women, Men & Women Emergency Housing, Women #4 Transitional Housing	Class II	Category I - Non-Friable	3, 511SF

LIFEMOVES SHELTER 1580 MAPLE STREET, REDWOOD CITY, CA HAZARDOUS MATERIALS SUMMARY

HOMO. ID	MATERIAL	DESCRIPTION	LOCATION	CAL/OSHA CLASS	BAAQMD CATEGORY	ESTIMATED QUANTITY
Y	Mastic/Grout	Tan/White, 4" Tan Ceramic Wall	Visitor RR 21, Inmate RR 23,	Class II	Category I - Non-Friable	288 SF
NN	Dampener	Attic	Attic	Class II	Friable (RACM when Removed)	10SF
J3	Window Panel	Gray, Cement Panels Between Metal	Windows of Program Conference 1B and Storefront	Class II	Category II - Non-Friable	176 SF

Lead-Based Paint and Materials

Room	Component	Substrate	Color	Condition	Pb	Units
Roof	Pipe	Metal	White	Intact	80.6	mg/cm ²
Roof	Pipe	Metal	White	Intact	75.7	mg/cm ²
Inmate Restroom	Wall	Ceramic	Yellow	Intact	7.1	mg/cm ²
Inmate Restroom	Wall	Ceramic	Yellow	Intact	7.5	mg/cm ²
Inmate Restroom	Sink	Ceramic	White	Intact	2.1	mg/cm ²
Common Area	Drain	Metal	Gold	Intact	14	mg/cm ²
Women's Restroom	Wall	Ceramic	Yellow	Intact	7.6	mg/cm ²
Women's Restroom	Stall	Metal	Brown	Intact	2.8	mg/cm ²
Women's Restroom	Floor Drain	Metal	Gray	Intact	3.1	mg/cm ²
Men's Restroom	Wall	Ceramic	Yellow	Intact	6.6	mg/cm ²
Men's Restroom	Urinal	Ceramic	White	Intact	1.3	mg/cm ²
Outside	Floor	Asphalt	Yellow	Intact	4.2	mg/cm ²

All remaining tested materials had lead concentrations in excess of the level for compliance with trigger activities, as defined in 8 CCR 1532.1.

Other Hazardous Materials

MATERIAL	CONTAMINANT	ESTIMATED QUANTITY
Other Non-Incandescent Lamps	Universal Waste	654

LIFEMOVES SHELTER 1580 MAPLE STREET, REDWOOD CITY, CA HAZARDOUS MATERIALS SUMMARY

MATERIAL	CONTAMINANT	ESTIMATED QUANTITY
Batteries (Back-up)	Universal Waste	17
Thermostat Triggers (Mercury)	Universal Waste	1
Metal Halide/ Sodium	Universal Waste	13
Light Fixture Ballasts	Polychlorinated Biphenyls	334
HVAC	Ozone Depleting Chemicals	9
Fridge/Water Coolers	Ozone Depleting Chemicals	14
Ozone Gas Generator	Ozone Depleting Chemicals	1
Smoke Detectors	Low-Level Radiation	36
Exit Signs	Low-Level Radiation	18
Roof Vents	Lead	21

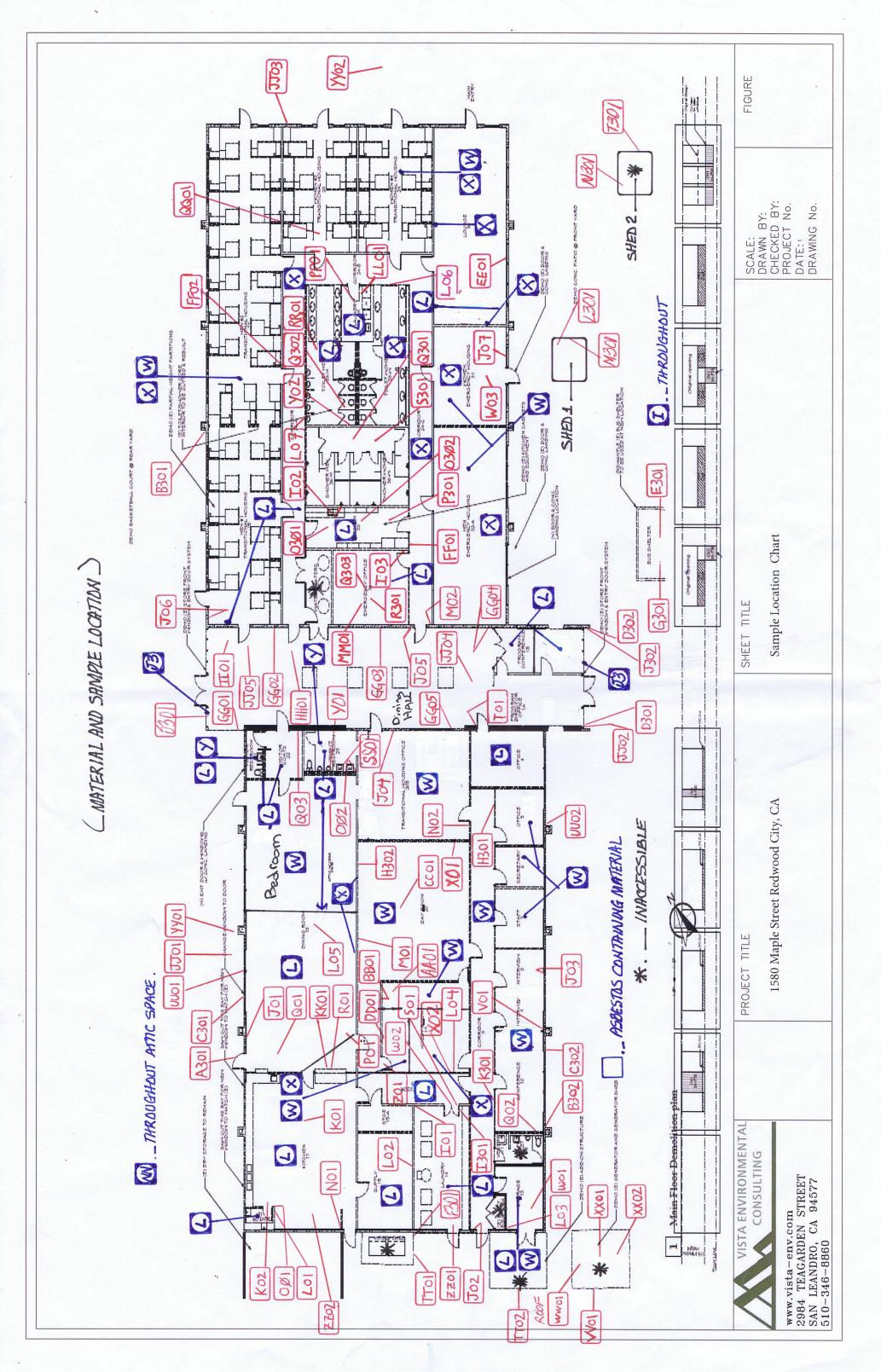
LIFEMOVES SHELTER 1580 MAPLE STREET, REDWOOD CITY, CA ASBESTOS SAMPLING INVENTORY

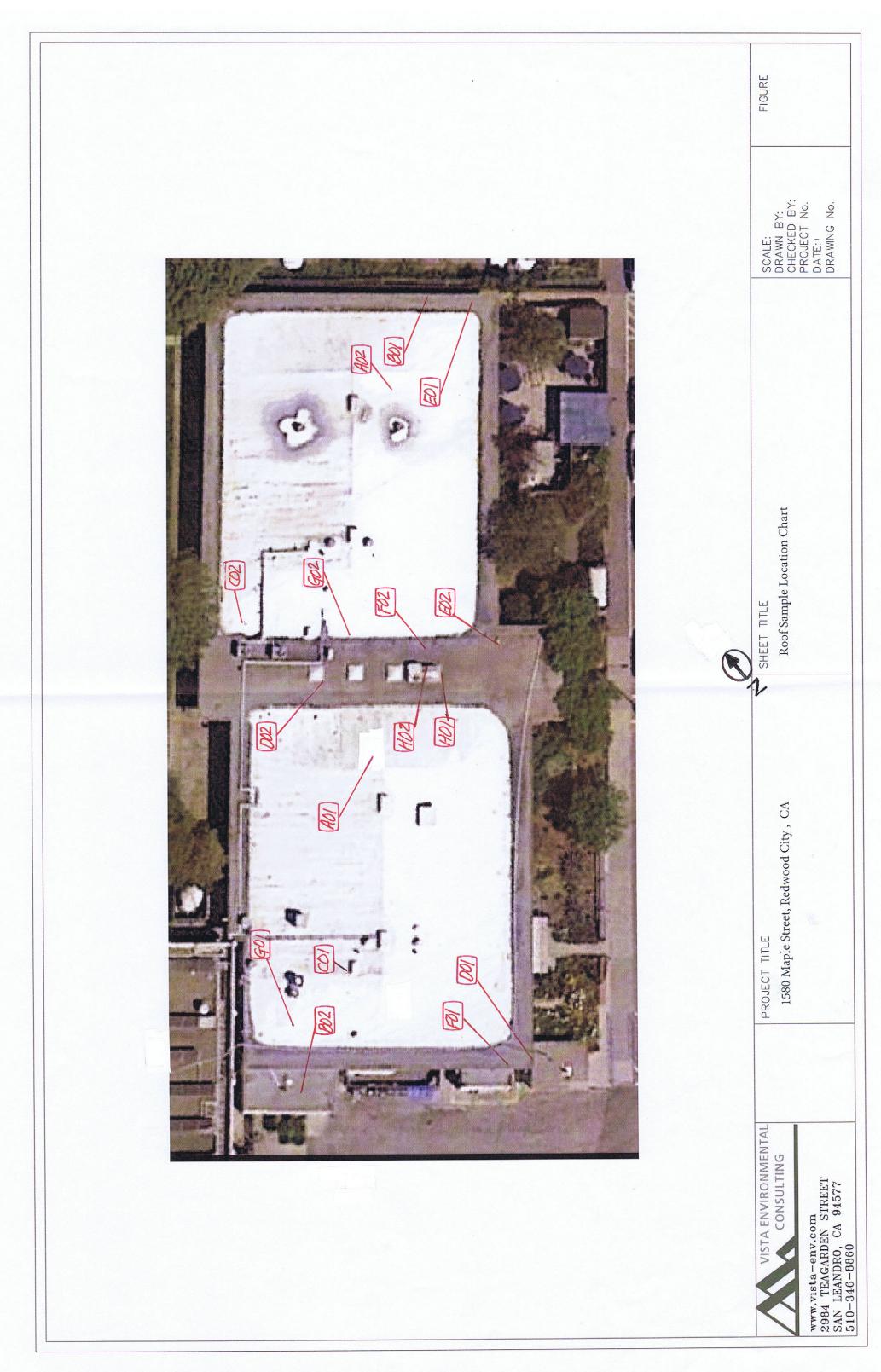
HOMOGENEOUS ID	MATERIAL	DESCRIPTION	# OF SAMPLES
А	Roof Field	White, Built-up	3
А	Roof	White, Asphalt	2
В	Roof	Black, Tar & Gravel	2
С	Mechanical Curb	White, Asphalt	2
D	Parapet/Mechanical Curb	Black, Asphalt	2
Е	Mastic	Gray/Black	2
F	Paint	Silver, Mechanical Curb Skylight	2
G	Mastic	White/Black, Mechanical Curb Edges	2
Н	Sealant	Gray, HVAC	2
Ι	Wallboard/Joint Compound	White/White	3
J	Paint/Skimcoat	White/White	7
К	Paint	Gray, Floor	2
L	Texture Coat	White, Medium	7
М	Basecove/Mastic	6" Brown/Tan	2
N	Mastic	Yellow, Wall Panel	2
0	Basecove/Mastic	6" Blue/White	2
Р	Vinyl Floor Tile/Mastic	12"x12" White, Beige Streaks/Black & Yellow	1
Q	Ceiling Tile/Mastic	12"x12" White Pinhole Fissure/Brown	3
R	Vinyl Floor Tile/Mastic	12"x12" Beige, Tan Streaks/Yellow	1
S	Vinyl Floor Tile/Mastic	12"x12" White, Off-White Streaks/Yellow	1
Т	Vinyl Floor Tile/Mastic	12"x12" White/Black	1

LIFEMOVES SHELTER 1580 MAPLE STREET, REDWOOD CITY, CA ASBESTOS SAMPLING INVENTORY

HOMOGENEOUS ID	MATERIAL	DESCRIPTION	# OF SAMPLES
U	Mastic	Brown, Carpet 2'x2' Gray Green	1
V	Basecove/Mastic	4" Blue/Brown	1
W	Vinyl Floor Tile/Mastic	9"x9" Tan, White Streaks/Black (Under Carpet & Vinyl Floor Tile)	3
Х	Mastic	Dark Brown, Wall Panel	2
Y	Mastic/Grout	Tan/White, 4" Tan Ceramic Wall	2
Z	Vinyl Floor Tile/Mastic	12"x12" White, Gray, Beige Streaks/Yellow	1
AA	Vinyl Floor Tile/Mastic	12"x12" Gray, White Streaks/Yellow	1
BB	Wallpaper	Tan, Fine Texture Pattern	1
CC	Mastic	Yellow, Green Carpet	1
DD	Basecove/Mastic	4" Red/Brown, White	1
EE	Vinyl Floor Tile/Mastic	2'x2' Stone/Yellow	1
FF	Mastic/Levelling Compound	Black, Residual	2
GG	Texture Coat	White, Small	5
НН	Vinyl Floor Tile/Mastic	12"x12" Blue/Black, Yellow	1
П	Vinyl Sheet Flooring/Mastic	White, Stone Pattern/Tan, Gray	1
JJ	Plaster	White, Ceiling	5
KK	Basecove/Mastic	6" Gray/Tan	1
LL	Basecove/Mastic	6" Black/White	1
ММ	Mastic/Levelling Compound	Yellow/White, Tan Carpet	1
NN	Dampener	Attic	Assumed
00	Vinyl Floor Tile/Mastic	Wood Grain/Black	1

LIFEMOVES SHELTER 1580 MAPLE STREET, REDWOOD CITY, CA ASBESTOS SAMPLING INVENTORY


HOMOGENEOUS ID	MATERIAL	DESCRIPTION	# OF SAMPLES
РР	Vinyl Floor Tile/Mastic	12"x12" Gray/Black	1
QQ	Vinyl Floor Tile/Mastic	12"x12" Green/Black	1
RR	Grout/Mortar	White/Gray	1
SS	Mastic	Tan Mirror	1
TT	Paint/Stucco/Vapor Barrier	White/Gray/Black	2
UU	Paint/Concrete	White/Gray	2
VV	Paint	Brown, Beige Wood	1
ww	Roofing	Tan, 3-Tab Asphalt	1
XX	Mastic	Black, Gray	2
YY	Sidewalk, Patio	Gray, Concrete	2
ZZ	Foundation	Gray, Concrete	2
A3	Insulation	Brown, Paper, Metal Fire Door	1
B3	Sealant	White, Black, Exterior Concrete Columns	2
C3	Window Putty	Gray, Exterior Windows	2
D3	Sealant	White, Gray Store Front	2
E3	Sealant	Black, Bu Shelter	1
F3	Sealant	White, Wall Flashing	1
G3	Concrete Foundation	Gray, Bus Platform	1
НЗ	Wall Panel	Beige, White	2
13	Insulation	Brown, Wood Door	1
J3	Window Panel	Gray, Cement Panels Between Metal	2



LIFEMOVES SHELTER 1580 MAPLE STREET, REDWOOD CITY, CA ASBESTOS SAMPLING INVENTORY

HOMOGENEOUS ID	MATERIAL	DESCRIPTION	# OF SAMPLES
К3	Fire Sealant	Red	1
L3	Roof	Tan, 3-Tab Asphalt, Shed 1	1
M3	Paint	Beige, Wood, Shed 1	1
N3	Roof	Black, 3-Tab Asphalt, Shed 2	1
O3	Sealant	White, HVAC Duct, Attic	2
P3	Flex Joint	Black, HVAC, Attic	1
Q3	Insulation	White, Elbow, Attic	3
R3	Insulation	White, Blown-in Insulation, Attic	1
S3	Insulation	4" OD White/Yellow	1
Т3	Paint	Beige, Wood, Shed 2	1

Bulk Asbestos Analysis

(EPA Method 600/R-93-116, Visual Area Estimation)

Vista Environmental Consultants Project Manager 2984 Teagarden St. San Leandro, CA 94577	X				Client ID: Report Number Date Received Date Analyzed Date Printed: First Reported	: 06/28/1 : 06/30/1 06/30/1	6 6 6
Job ID/Site: 161101003 - County of San Date(s) Collected: 06/27/2016	n Mateo, Maple	e Street Shelter			FALI Job ID: Total Samples Total Samples		125 124
Date (3) Concerca : 00/2//2010		Asbestos	Percent in	Asbestos	Percent in	Asbestos	Percent in
Sample ID	Lab Number		Layer	Туре	Layer	Туре	Layer
MSS-A01	11779880						
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Total Composite Values of Fibrous Cor Cellulose (55 %) Fibrous Glass (10 Comment: Bulk complex sample.	-	Asbestos (ND)					
MSS-A02	11779881						
Layer: Black Tar	11,7,7001		ND				
Layer: Black Felt			ND				
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Total Composite Values of Fibrous Cor Cellulose (55 %) Fibrous Glass (10 Comment: Bulk complex sample.	*	Asbestos (ND)					
MSS-B01	11779882						
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Total Composite Values of Fibrous Cor	mponents:	Asbestos (ND)					
Cellulose (55 %) Fibrous Glass (10	-						
Comment: Bulk complex sample.							

Client Name: Vista Environmental Const	ıltants				Report Numb Date Printed:	er: B22384 06/30/1	
Sample ID	Lab Number	Asbestos r Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-B02 Layer: Black Tar Layer: Black Felt Layer: Black Tar Layer: Black Felt Layer: Black Tar Layer: Black Felt Total Composite Values of Fibrous Con Cellulose (55 %) Fibrous Glass (10	-	Asbestos (ND)	ND ND ND ND ND				
Comment: Bulk complex sample. MSS-C01 Layer: Black Tar Layer: Black Felt Layer: Black Felt Layer: Black Tar Layer: Black Felt Layer: Black Felt Layer: Black Felt Layer: Black Felt Layer: Black Felt Layer: Black Felt Layer: Black Felt	11779884		ND ND ND ND ND ND ND ND ND ND				
Total Composite Values of Fibrous Con Cellulose (55 %) Fibrous Glass (10 Comment: Bulk complex sample.	-	Asbestos (ND)					
MSS-C02 Layer: Black Tar Layer: Black Felt Layer: Black Tar Layer: Black Felt Layer: Black Tar Layer: Black Felt	11779885		ND ND ND ND ND ND				
Total Composite Values of Fibrous Con Cellulose (55 %) Fibrous Glass (10 Comment: Bulk complex sample.	-	Asbestos (ND)					
MSS-D01 Layer: Black Tar Layer: Black Felt Layer: Black Tar Layer: Black Felt Layer: Black Tar Layer: Black Felt	11779886		ND ND ND ND ND ND				
Total Composite Values of Fibrous Con Cellulose (55 %) Fibrous Glass (10 Comment: Bulk complex sample.	-	Asbestos (ND)					

Client Name: Vista Environmental Con	nsultants				Report Numb Date Printed:		
Sample ID	Lab Number	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-D02	11779887						
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Layer: Black Tar			ND				
Layer: Black Felt			ND				
Total Composite Values of Fibrous C Cellulose (55 %) Fibrous Glass (Comment: Bulk complex sample.	-	sbestos (ND)					
MSS-E01	11779888						
Layer: Black Mastic			ND				
Total Composite Values of Fibrous C	omponents: A	sbestos (ND)					
Cellulose (10 %) Fibrous Glass (*	etic (Trace)					
MSS-E02	11779889						
Layer: Black Mastic	11///00/		ND				
Total Composite Values of Fibrous C	omponants:	sbestos (ND)					
Cellulose (10 %) Fibrous Glass (-	etic (Trace)					
		elle (mace)					
MSS-F01	11779890		ND				
Layer: Silver Paint			ND				
Total Composite Values of Fibrous CCellulose (2 %)Synthetic (Trace	*	sbestos (ND)					
MSS-F02	11779891						
Layer: Silver Paint			ND				
Total Composite Values of Fibrous C Cellulose (2 %) Synthetic (Trace	-	asbestos (ND)					
MSS-G01	11779892						
Layer: White Mastic			ND				
Layer: Black Mastic			ND				
Total Composite Values of Fibrous C	omponents: A	sbestos (ND)					
Cellulose (10 %) Fibrous Glass (*	tic (5 %)					
MSS-G02	11779893						
Layer: White Mastic	11///0/5		ND				
Layer: Black Mastic			ND				
Total Composite Values of Fibrous C	omponents:	sbestos (ND)					
Cellulose (10%) Fibrous Glass (2%) Synthet	tic (5 %)					
MSS-H01 Layer: Grey Non-Fibrous Material	11779894		ND				
Total Composite Values of Fibrous C Cellulose (Trace)	omponents: A	sbestos (ND)					
MSS-H02 Layer: Grey Non-Fibrous Material	11779895		ND				
Total Composite Values of Fibrous C	omponents: A	asbestos (ND)					
Cellulose (Trace)							

Client Name: Vista Environmental Cons	ultants				Report Numb Date Printed:		
Sample ID	Lab Numbe	Asbestos r Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-I01 Layer: White Drywall Layer: White Joint Compound Layer: White Tape Layer: Off-White Joint Compound Layer: Paint	11779896	Chrysotile	ND 2 % ND ND ND				
Total Composite Values of Fibrous CorCellulose (20 %)Fibrous Glass (10)	*	Asbestos (Trace)				
MSS-I02 Layer: White Drywall Layer: Off-White Joint Compound Layer: Paint	11779897	Chrysotile	ND 2 % ND				
Total Composite Values of Fibrous Cor Cellulose (20 %) Fibrous Glass (10	*	Asbestos (Trace)				
MSS-I03 Layer: White Drywall Layer: Off-White Joint Compound Layer: White Tape Layer: Off-White Joint Compound Layer: Paint	11779898	Chrysotile Chrysotile	ND 2 % ND 2 % ND				
Total Composite Values of Fibrous Cor Cellulose (20 %) Fibrous Glass (10	*	Asbestos (Trace)				
MSS-J01 Layer: White Skimcoat Layer: Paint	11779899		ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (ND)					
MSS-J02 Layer: White Skimcoat Layer: Paint	11779900		ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (ND)					
MSS-J03 Layer: White Skimcoat Layer: Paint	11779901		ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (ND)					
MSS-J04 Layer: White Skimcoat Layer: Paint	11779902		ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (ND)					

Client Name: Vista Environmental Const	ıltants				Report Numb Date Printed:	er: B2238 06/30/	
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-J05 Layer: White Skimcoat Layer: Paint	11779903		ND ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
MSS-J06 Layer: White Skimcoat Layer: Paint	11779904		ND ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
MSS-J07 Layer: White Skimcoat Layer: Paint	11779905		ND ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
MSS-K01 Layer: Grey Cementitious Material Layer: Paint	11779906		ND ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
MSS-K02 Layer: Grey Cementitious Material Layer: Paint	11779907		ND ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
MSS-L01 Layer: White Texture Layer: Paint	11779908	Chrysotile	2 % ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (2%)					
MSS-L02 Layer: White Texture Layer: Paint	11779909	Chrysotile	2 % ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (2%)					
MSS-L03 Layer: White Texture Layer: Paint	11779910	Chrysotile	2 % ND				
Total Composite Values of Fibrous ConCellulose (Trace)Synthetic (2 %)	ponents:	Asbestos (2%)					

Client Name: Vista Environmental Cons	sultants				Report Numb Date Printed:	er: B2238 06/30/	
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-L04 Layer: White Texture Layer: Paint	11779911	Chrysotile	2 % ND				
Total Composite Values of Fibrous Co Cellulose (Trace) Synthetic (2 %)	-	Asbestos (2%)					
MSS-L05 Layer: White Texture Layer: Paint	11779912		ND ND				
Total Composite Values of Fibrous CoCellulose (Trace)Synthetic (2 %)	mponents:	Asbestos (ND)					
MSS-L06 Layer: White Texture Layer: Paint	11779913	Chrysotile	2 % ND				
Total Composite Values of Fibrous CoCellulose (Trace)Synthetic (2 %)	mponents:	Asbestos (2%)					
MSS-L07 Layer: White Texture Layer: Paint	11779914	Chrysotile	2 % ND				
Total Composite Values of Fibrous CoCellulose (Trace)Synthetic (2 %)	mponents:	Asbestos (2%)					
MSS-M01 Layer: Brown Non-Fibrous Material Layer: Tan Mastic Layer: Brown Mastic	11779915		ND ND ND				
Total Composite Values of Fibrous Co Cellulose (Trace)	mponents:	Asbestos (ND)					
MSS-M02 Layer: Brown Non-Fibrous Material Layer: Tan Mastic Layer: Brown Mastic	11779916		ND ND ND				
Total Composite Values of Fibrous Co Cellulose (Trace)	mponents:	Asbestos (ND)					
MSS-N01 Layer: Yellow Mastic	11779917		ND				
Total Composite Values of Fibrous Co Cellulose (Trace) Synthetic (Trace	-	Asbestos (ND)					
MSS-N02 Layer: Yellow Mastic	11779918		ND				
Total Composite Values of Fibrous CoCellulose (Trace)Synthetic (Trace)	-	Asbestos (ND)					

Client Name: Vista Environmental Cons	ultants				Report Numb Date Printed:		
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-001 Layer: Blue Non-Fibrous Material Layer: White Mastic	11779919		ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (ND)					
MSS-002 Layer: Blue Non-Fibrous Material Layer: White Mastic	11779920		ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (ND)					
MSS-P01 Layer: White Tile Layer: Yellow Mastic	11779921		ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (ND)					
MSS-Q01 Layer: Brown Mastic Layer: Tan Fibrous Material Layer: Paint	11779922		ND ND ND				
Total Composite Values of Fibrous Cor Cellulose (95 %)	nponents:	Asbestos (ND)					
MSS-Q02 Layer: Brown Mastic Layer: Tan Fibrous Material Layer: Paint	11779923		ND ND ND				
Total Composite Values of Fibrous Cor Cellulose (95 %)	nponents:	Asbestos (ND)					
MSS-Q03 Layer: Brown Mastic Layer: Tan Fibrous Material Layer: Paint	11779924		ND ND ND				
Total Composite Values of Fibrous Cor Cellulose (95 %)	nponents:	Asbestos (ND)					
MSS-R01 Layer: Beige Tile Layer: Yellow Mastic	11779925		ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (ND)					
MSS-S01 Layer: Beige Tile Layer: Yellow Mastic	11779926		ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (ND)					

Client Name: Vista Environmental Consu	ltants				Report Numb Date Printed:	er: B2238 06/30/	
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-T01 Layer: Black Mastic Layer: White Tile Layer: Tan Mastic	11779927		ND ND ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (ND)					
MSS-U01 Layer: Tan Mastic	11779928		ND				
Total Composite Values of Fibrous ComCellulose (Trace)Synthetic (Trace)	-	Asbestos (ND)					
MSS-V01 Layer: Blue Non-Fibrous Material Layer: Tan Mastic Layer: Brown Mastic	11779929		ND ND ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (ND)					
MSS-W01 Layer: Tan Mastic Layer: Brown Tile Layer: Black Mastic	11779930	Chrysotile Chrysotile	ND 5 % Trace				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (5%)					
MSS-W02 Layer: Beige Non-Fibrous Material Layer: Brown Tile Layer: Black Mastic	11779931	Chrysotile	ND 5 % ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (5%)					
MSS-W03 Layer: Tan Tile Layer: Black Mastic	11779932	Chrysotile Chrysotile	5 % 2 %				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (5%)					
MSS-X01 Layer: Tan Fibrous Material Layer: Off-White Non-Fibrous Material Layer: Paint Layer: Black Mastic	11779933	Chrysotile Chrysotile	ND 2 % ND 2 %				
Total Composite Values of Fibrous Com Cellulose (65 %)	ponents:	Asbestos (Trace					

Client Name: Vista Environmental Cons	ultants				Report Numb Date Printed:		
Sample ID	Lab Numbe	Asbestos r Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-X02 Layer: Tan Semi-Fibrous Material Layer: Black Mastic	11779934	Chrysotile	ND 2 %				
Total Composite Values of Fibrous Cor Cellulose (10 %)	nponents:	Asbestos (Trace	2)				
MSS-Y01 Layer: White Non-Fibrous Material Layer: White Non-Fibrous Material Layer: Tan Mastic	11779935	Chrysotile	ND ND 2 %				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (Trace	2)				
MSS-Y02 Layer: Brown Fibrous Material Layer: Off-White Non-Fibrous Materia Layer: Tan Mastic	11779936 I	Chrysotile	ND ND 2 %				
Total Composite Values of Fibrous Cor Cellulose (75 %)	nponents:	Asbestos (Trace	2)				
MSS-Z01 Layer: Off-White Mastic Layer: Off-White Tile Layer: Tan Mastic	11779937		ND ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (ND)					
MSS-AA01 Layer: Grey Tile Layer: Tan Mastic	11779938		ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (ND)					
MSS-BB01 Layer: Off-White Semi-Fibrous Materia Layer: Off-White Mastic Layer: Tan Fibrous Material	11779939 al		ND ND ND				
Total Composite Values of Fibrous ConCellulose (50 %)Synthetic (10 %)	nponents:	Asbestos (ND)					
MSS-CC01 Comment: Sample not analyzed due to	11779940 prior positive	e result in series.					
MSS-DD01 Layer: Brown Non-Fibrous Material Layer: Off-White Mastic Layer: Paint Layer: Brown Mastic	11779941		ND ND ND ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (ND)					

ıltants				-		
Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
11779942						
		ND				
		ND				
ponents:	Asbestos (ND)					
11779943						
ponents:	Asbestos (ND)					
11779944						
		ND				
		ND				
ponents:	Asbestos (ND)					
11779945						
		ND				
		ND				
		ND				
-	Asbestos (ND)					
11779946						
		ND				
		ND				
		ND				
1	Asbestos (ND)					
11779947						
		ND				
		ND				
		ND				
1	Asbestos (ND)					
11779948						
		ND				
		ND				
		ND				
nponents: %)	Asbestos (ND)					
	11779942 aponents: 11779943 aponents: 11779944 aponents: 11779945 11779945 aponents: %) 11779946 aponents: %) 11779947 aponents: %) 11779948	Lab NumberAsbestos Type11779942Asbestos (ND)IPONENTS:Asbestos (ND)	Lab NumberAsbestos TypePercent in Layer11779942ND 	Lab NumberAsbestos TypePercent in LayerAsbestos Type11779942ND ND NDND ND NDaponents:Asbestos (ND)ND ND ND ND ND ND ND ND ND ND ND11779943Sbestos (ND)Image: Component set of the	Itatats Date Printed: Lab Number Asbestos Percent in Layer Asbestos Percent in Layer 11779942 ND ND ND ND 11779943 Image: State St	Lab Number Asbestos Type Percent in Layer Asbestos Type Percent in Layer Asbestos Type 11779942 ND ND ND ND ND Image: Comparison of the target of

Client Name: Vista Environmental Const	ıltants				Report Numb Date Printed:	er: B22384 06/30/2	
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-GG05 Layer: White Drywall Layer: White Texture Layer: Paint	11779949		ND ND ND				
Total Composite Values of Fibrous Con Cellulose (20 %) Fibrous Glass (10	-	Asbestos (ND)					
MSS-HH01 Layer: Blue Tile Layer: Yellow Mastic	11779950		ND ND				
Total Composite Values of Fibrous Con Cellulose (10 %)	ponents:	Asbestos (ND)					
MSS-II01 Layer: Tan Tile Layer: Tan Mastic Layer: Black Mastic	11779951		ND ND ND				
Total Composite Values of Fibrous Con Cellulose (3 %)	ponents:	Asbestos (ND)					
MSS-JJ01 Layer: Off-White Plaster Layer: Grey Plaster Layer: Paint	11779952		ND ND ND				
Total Composite Values of Fibrous Con Cellulose (2 %)	ponents:	Asbestos (ND)					
MSS-JJ02 Layer: Off-White Plaster Layer: Grey Plaster Layer: Paint	11779953		ND ND ND				
Total Composite Values of Fibrous Con Cellulose (2 %)	ponents:	Asbestos (ND)					
MSS-JJ03 Layer: Off-White Plaster Layer: Grey Plaster Layer: Paint	11779954		ND ND ND				
Total Composite Values of Fibrous Con Cellulose (2 %)	ponents:	Asbestos (ND)					
MSS-JJ04 Layer: Off-White Plaster Layer: Grey Plaster Layer: Paint	11779955		ND ND ND				
Total Composite Values of Fibrous Con Cellulose (2 %)	ponents:	Asbestos (ND)					

Client Name: Vista Environmental Consu	ıltants				Report Numb Date Printed:	er: B2238 06/30/	
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-JJ05 Layer: Off-White Plaster Layer: Grey Plaster Layer: Paint	11779956		ND ND ND				
Total Composite Values of Fibrous Con Cellulose (2 %)	ponents:	Asbestos (ND)					
MSS-KK01 Layer: Grey Non-Fibrous Material Layer: Yellow Mastic	11779957		ND ND				
Total Composite Values of Fibrous Con Cellulose (2 %)	ponents:	Asbestos (ND)					
MSS-LL01 Layer: Black Non-Fibrous Material Layer: Yellow Mastic	11779958		ND ND				
Total Composite Values of Fibrous Con Cellulose (2 %)	ponents:	Asbestos (ND)					
MSS-MM01 Layer: Off-White Non-Fibrous Material Layer: Yellow Mastic	11779959		ND ND				
Total Composite Values of Fibrous Com Cellulose (2 %)	ponents:	Asbestos (ND)					
MSS-OO01 Layer: Black Tile Layer: Yellow Mastic	11779960		ND ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
MSS-PP01 Layer: Grey Tile Layer: Yellow Mastic	11779961		ND ND				
Total Composite Values of Fibrous Com Cellulose (2 %)	ponents:	Asbestos (ND)					
MSS-QQ01 Layer: Blue Green Tile Layer: Yellow Mastic	11779962		ND ND				
Total Composite Values of Fibrous Com Cellulose (2 %)	ponents:	Asbestos (ND)					
MSS-RR01 Layer: Grey Grout Layer: White Mortar	11779963		ND ND				
Total Composite Values of Fibrous Com Cellulose (2 %)	ponents:	Asbestos (ND)					

Client Name: Vista Environmental Consu	ltants				Report Numb Date Printed:	er: B22384 06/30/1	
Sample ID	Lab Numbe	Asbestos r Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-SS01 Layer: Yellow Mastic Layer: Paint	11779964		ND ND				
Total Composite Values of Fibrous Com Cellulose (2 %)	ponents:	Asbestos (ND)					
MSS-TT01 Layer: Black Semi-Fibrous Material Layer: Grey Cementitious Material Layer: Paint	11779965		ND ND ND				
Total Composite Values of Fibrous Com Cellulose (10 %)	ponents:	Asbestos (ND)					
MSS-TT02 Layer: Black Semi-Fibrous Material Layer: Yellow Mastic Layer: Grey Cementitious Material Layer: Paint	11779966		ND ND ND ND				
Total Composite Values of Fibrous Com Cellulose (10 %)	ponents:	Asbestos (ND)					
MSS-UU01 Layer: Grey Cementitious Material Layer: Paint	11779967		ND ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (ND)					
MSS-UU02 Layer: Grey Cementitious Material Layer: Paint	11779968		ND ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (ND)					
MSS-VV01 Layer: Tan Paint	11779969		ND				
Total Composite Values of Fibrous Com Cellulose (2 %)	ponents:	Asbestos (ND)					
MSS-WW01 Layer: White Stones Layer: Black Tar Layer: Black Felt Layer: Black Tar Layer: Black Tar Layer: Black Tar Layer: Black Felt	11779970		ND ND ND ND ND ND				
Total Composite Values of Fibrous ComCellulose (55 %)Fibrous Glass (10	-	Asbestos (ND)					

Client Name: Vista Environmental Const	ıltants				Report Numb Date Printed:		
Sample ID	Lab Numbe	Asbestos r Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-XX01 Layer: Black Mastic Layer: Grey Mastic	11779971		ND ND				
Total Composite Values of Fibrous Con Cellulose (20 %)	ponents:	Asbestos (ND)					
MSS-XX02 Layer: Black Mastic	11779972		ND				
Total Composite Values of Fibrous Con Cellulose (20 %)	ponents:	Asbestos (ND)					
MSS-YY01 Layer: Grey Cementitious Material	11779973		ND				
Total Composite Values of Fibrous Con Cellulose (5 %)	ponents:	Asbestos (ND)					
MSS-YY02 Layer: Grey Cementitious Material	11779974		ND				
Total Composite Values of Fibrous Con Cellulose (5 %)	ponents:	Asbestos (ND)					
MSS-ZZ01 Layer: Grey Cementitious Material	11779975		ND				
Total Composite Values of Fibrous Con Cellulose (5 %)	ponents:	Asbestos (ND)					
MSS-ZZ02 Layer: Grey Cementitious Material	11779976		ND				
Total Composite Values of Fibrous Con Cellulose (5 %)	ponents:	Asbestos (ND)					
MSS-A301 Layer: Brown Fibrous Material	11779977		ND				
Total Composite Values of Fibrous Con Cellulose (85 %)	ponents:	Asbestos (ND)					
MSS-B301 Layer: Black Semi-Fibrous Tar Layer: White Non-Fibrous Material Layer: Paint	11779978		ND ND ND				
Total Composite Values of Fibrous Con Cellulose (65 %)	ponents:	Asbestos (ND)					
MSS-B302 Layer: Black Semi-Fibrous Tar Layer: White Non-Fibrous Material Layer: Paint	11779979		ND ND ND				
Total Composite Values of Fibrous Con Cellulose (65 %)	ponents:	Asbestos (ND)					

Client Name: Vista Environmental Consu	ltants				Report Numb Date Printed:		
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-C301 Layer: Grey Non-Fibrous Material	11779980		ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (ND)					
MSS-C302 Layer: Grey Non-Fibrous Material	11779981		ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (ND)					
MSS-D301 Layer: Grey Non-Fibrous Material Layer: Off-White Non-Fibrous Material Layer: Paint	11779982		ND ND ND				
Total Composite Values of Fibrous Com Cellulose (3 %)	ponents:	Asbestos (ND)					
MSS-D302 Layer: Grey Non-Fibrous Material Layer: Off-White Non-Fibrous Material Layer: Paint	11779983		ND ND ND				
Total Composite Values of Fibrous Com Cellulose (3 %)	ponents:	Asbestos (ND)					
MSS-E301 Layer: Black Non-Fibrous Material	11779984		ND				
Total Composite Values of Fibrous Com Cellulose (2 %)	ponents:	Asbestos (ND)					
MSS-F301 Layer: White Non-Fibrous Material	11779985		ND				
Total Composite Values of Fibrous Com Cellulose (2 %)	ponents:	Asbestos (ND)					
MSS-G301 Layer: Grey Cementitious Material	11779986		ND				
Total Composite Values of Fibrous Com Cellulose (3 %)	ponents:	Asbestos (ND)					
MSS-H301 Layer: White Drywall Layer: Beige Semi-Fibrous Material	11779987		ND ND				
Total Composite Values of Fibrous Com Cellulose (10 %)	ponents:	Asbestos (ND)					
MSS-H302 Layer: White Drywall Layer: Beige Semi-Fibrous Material	11779988		ND ND				
Total Composite Values of Fibrous Com Cellulose (10 %)	ponents:	Asbestos (ND)					

Client Name: Vista Environmental Cons	ultants				Report Number Date Printed:	er: B22384 06/30/1	
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-I301 Layer: Brown Semi-Fibrous Material	11779989		ND				
Total Composite Values of Fibrous Con Cellulose (20 %)	nponents:	Asbestos (ND)					
MSS-J301 Layer: Grey Semi-Fibrous Material	11779990	Chrysotile	15 %				
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (15%)					
MSS-J302 Layer: Grey Semi-Fibrous Material	11779991	Chrysotile	15 %				
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (15%)					
MSS-K301 Layer: Red Non-Fibrous Material	11779992		ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (ND)					
MSS-L301 Layer: Stones Layer: Black Tar Layer: Black Felt Layer: Stones Layer: Black Tar Layer: Black Felt Layer: Black Tar Layer: Black Felt	11779993		ND ND ND ND ND ND ND				
Total Composite Values of Fibrous Con Cellulose (10 %) Fibrous Glass (20 Comment: Bulk complex sample.	-	Asbestos (ND)					
MSS-M301 Layer: Tan Wood Layer: Paint Total Composite Values of Fibrous Con	11779994	Asbestos (ND)	ND ND				
Cellulose (95 %)	-	(1(2)					
MSS-N301 Layer: Stones Layer: Black Tar Layer: Black Felt Layer: Stones Layer: Black Tar Layer: Black Felt Layer: Black Tar Layer: Black Felt	11779995		ND ND ND ND ND ND ND				
Total Composite Values of Fibrous Con Cellulose (10 %) Fibrous Glass (20 Comment: Bulk complex sample.	*	Asbestos (ND)					

Client Name: Vista Environmental Const	ultants				Report Numb Date Printed:		
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
MSS-0301 Layer: Off-White Semi-Fibrous Materia	11779996 al		ND				
Total Composite Values of Fibrous Con Synthetic (2 %)	nponents:	Asbestos (ND)					
MSS-0302 Layer: Off-White Semi-Fibrous Materia	11779997 al		ND				
Total Composite Values of Fibrous Con Synthetic (2 %)	nponents:	Asbestos (ND)					
MSS-P301 Layer: Black Semi-Fibrous Material	11779998		ND				
Total Composite Values of Fibrous Con Synthetic (15 %)	nponents:	Asbestos (ND)					
MSS-Q301 Layer: Grey Semi-Fibrous Material Layer: Tan Woven Material	117799999		ND ND				
Total Composite Values of Fibrous Con Cellulose (20 %) Fibrous Glass (15	*	Asbestos (ND)					
MSS-Q302 Layer: Grey Semi-Fibrous Material Layer: Tan Woven Material	11780000		ND ND				
Total Composite Values of Fibrous ConCellulose (20 %)Fibrous Glass (15	-	Asbestos (ND)					
MSS-Q303 Layer: Grey Semi-Fibrous Material Layer: Tan Woven Material	11780001		ND ND				
Total Composite Values of Fibrous Con Cellulose (20 %) Fibrous Glass (15	-	Asbestos (ND)					
MSS-R301 Layer: Off-White Fibrous Material	11780002		ND				
Total Composite Values of Fibrous Con Cellulose (Trace) Fibrous Glass (95	-	Asbestos (ND)					
MSS-S301 Layer: Yellow Fibrous Material Layer: Black Tar Layer: Silver Foil Layer: Tan Fibrous Material	11780003		ND ND ND ND				
Total Composite Values of Fibrous ConCellulose (3 %)Fibrous Glass (90 %)	-	Asbestos (ND)					
MSS-T301 Layer: Tan Wood Layer: Paint	11780004		ND ND				
Total Composite Values of Fibrous Con Cellulose (50 %)	nponents:	Asbestos (ND)					

					Report Num	ber: B2238	45
Client Name: Vista Environm	Date Printed	: 06/30/	16				
		Asbestos	Percent in	Asbestos	Percent in	Asbestos	Percent in
Sample ID	Lab Number	Туре	Layer	Туре	Layer	Туре	Layer

Lad Shrower

Tad Thrower, Laboratory Supervisor, Hayward Laboratory

Note: Limit of Quantification ('LOQ') = 1%. 'Trace' denotes the presence of asbestos below the LOQ. 'ND' = 'None Detected'. Analytical results and reports are generated by Forensic Analytical Laboratories Inc. (FALI) at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by FALI to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by FALI. The client is solely responsible for the use and interpretation of test results and reports requested from FALI. Forensic Analytical Laboratories Inc. is not able to assess the degree of hazard resulting from materials analyzed. FALI reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. All samples were received in acceptable condition unless otherwise noted.

ASBESTOS BULK SAMPLE LOG

2984 TEAGARDÈN STREET SAN LEANDRO, CA 94577 OFFICE 510.346.8860 FAX 888.653.8889

CLIENT: County of San Mateo

DATE: 06/27/16 PROJECT NUMBER: 161101003

LOCATION: Maple Street Shelter

SAMPLED BY: CE

CAC OR SST NO: 16-5602

BUILDING	Homo AREA ID	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)
MSS	A	01	ROOF	WHITE, ASPHALT		
MSS	A	02	\checkmark			
MSS	В	01	ROOF	BLACK, TAR + GRAVEZ	_	
MSS	В	02	\downarrow			
MSS	С	01	CURB	ASPHALT		
MSS	С	02	\checkmark	1		
MSS	D	01	PARAPET/ MECHANKAL C	BLACK, URB ASPHALT	-	
MSS	D	02	\checkmark	1		
MSS	E	01	MASTIC	GRAY/BLACK	د	
MSS	E	OZ	\checkmark			
ANALYTICAL	. Метнор:		OPLCOUNT	Turnaround Tii	ME: SAME DAY 24HR	48 HR) 3 DA
DATA SENT				QUESTI	RISBURNS@VISTA-ENV.CC	
SPECIAL INS	TRUCTION	s: + per	Christ.	, 2 DAY TAT	0K1 @ 6 28 14	×
CHAIN O	-	ODY:		/	12 12	
1. Chi	TRANSF	ER SIGNAT	JRE Ú	PRINTED NAME	DATE/TIM	E,
2	RANSF	E		S. TOLII STOR PRINTED NAME	- UN BAREAN	134567
3 Page1	TRANSF	ER SIGNATI	JRE	PRINTED NAME	WV ZI II	

ASBESTOS BULK SAMPLE LOG

OFFICE 510.346.8860 FAX 888.653.8889

CLIENT: County of San Mateo

DATE: 06/27/16 PROJECT NUMBER: 161101003

LOCATION: Maple Street Shelter

SAMPLED BY: CE

CAC OR SST NO: 16 - 5602

BUILDING	Homo AREA ID	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)
M35	F	01	PAINT	SILVER, MECH. CURB	SKYLIGHT	
MSS	F	02	\checkmark	V		
MSS	G	01	MASTIC	WHITE/BLACK MECH. CURB EC		
MSS	G	02	¥	ł		
MSS	H	01	SEALANT	GRAY, HVAC		
MSS	H	OZ	\checkmark			
MSS	Ŧ	01	WB/JC	WH ITE WHITE		
MSS	I	02				
MSS	I	03	\checkmark			
MSS	J	01	PAINT/ SKIMCOAT	WH ITE WH ITE	Ţ.	

ANALYTICAL METHOD: PLM

DATA SENT TO:

400 PT COUNT TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY

FIVE

6

E/TIME

DATE/TIME

DA'

TIME

CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM QUESTIONS CALL: 510,658,8860

SPECIAL INSTRUCTIONS:_

CHAIN OF CUSTODY: 1. Tropes ER SIGNATURE PRINTED NAME RANSF s.ttollister 2. R SIGNATURE PRINTED NAME 3. TRANSFER SIGNATURE PRINTED NAME PAGE____OF___13 _

ASBESTOS BULK SAMPLE LOG

2984 TEAGARDEN STREET SAN LEANDRO, CA 94577 OFFICE 510.346.8860 FAX 888.653.8889

CLIENT: County of San Mateo

DATE: 06/27/110

LOCATION: Maple Street Shelter

SAMPLED BY: CE

PROJECT NUMBER: 161101003

CAC OR SST NO: 16 - 5602

BUILDING	Homo AREA ID	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)
MSS	J	02				
MSS	J	03				
MSS	J	04				
MSS	J	05				
MSS	J	06				
MSS	J	07	Y	X		
MSS	K	01	PAINT	GRAY, FLOOR		
MSS	ĸ	02	\checkmark	\checkmark		
MSS	L	01	TEXTURE	WHITE, MEDIUM		
MSS	L	02	V	\checkmark		

Analytical Method: PLM

400 PT COUNT TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY

DATA SENT TO:

CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM QUESTIONS CALL: 510.658.8860

SPECIAL INSTRUCTIONS:

CHAIN OF CUSTODY: 1. 'e, RECEIVED OQ, TRANSFER SIGNATURE DATE/ TIME JUN 2 8 2016 2. R SIGNATURE DATE/TIME ED NAME DIC 3. TRANSFER SIGNATURE YV ZL PRINTED NAME DATE/TIME _OF_13 Page_3

ASBESTOS BULK SAMPLE LOG

510.346.8860 OFFICE 888.653.8889 FAX

CLIENT: County of San Mateo

DATE: 06/27/16

Maple Street Shelter LOCATION:

SAMPLED BY:_CE

PROJECT NUMBER: 161101003

CAC OR SST NO: 16-5602

BUILDING	Homo AREA ID	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)
MSS	L	03				
MSS	L	04				
MSS	L	05				
MSS	L	06				
MSS	L	07	×	V		
MSS	M	01	BASECOVE/ MASTIC	6" BROWN/ TAN		
MSS	M	02	\downarrow	Ţ		
MSS	N	01	MASTIC	YEZLOW, WALL PANEZ		
MSS	N	02		1		
MSS	0	0)	BASECOVE/ MASTIC	6" BLUE/ WHITE		

ANALYTICAL METHOD: PLM 400 PT-GOUNT DATA SENT TO:

1

TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY

CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM

QUESTIONS CALL: 510.658.8860

SPECIAL INSTRUCTIONS:

2.

3.

CHAIN OF CUSTODY: 06 TRANSFER SIGNATURE RECEIVED SHILLIGHE **NR SIGNATURE** PRINTED NAME RAI DATE/TIME 2010 Ø 2:3 TRANSFER SIGNATURE PRINTED NAME DATE/TIME WY ZL PAGE_4 _OF_13

Maple Street Shelter

2984 TEAGARDEN STREET SAN LEANDRO, CA 94577

ASBESTOS BULK SAMPLE LOG

OFFICE 510.346.8860 888.653.8889 FAX

DATE: 06/27/16

CLIENT: County of San Mateo

SAMPLED BY: CE

LOCATION:

PROJECT NUMBER: 161101003

CAC OR SST NO: 16-5602

BUILDING	Homo AREA ID	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)
MSS	0	02	\checkmark	\checkmark		
MSS	Р	0	VFT/MASTIC	12"x12" WHITE, BEIGE S	TREAKS/BLACK, YEL	aw
MSS	Q	0	ACT/MASTIC	12 "X12" WHITE PINHOLE FISSURE	Raw	
MSS	Q	02				
MSS	Q	03	V	\checkmark		
MSS	R	01	VFT/MASTIC	12"x12" BEIGE, TAN STREAKS	ELOW	
MSS	S	01	VFT/MASTIC	OFF WHITE STRE	AKS/NELLOW	
MSS	T	01	VFT/MASTIC	IL XIZ		
MSS	U	01	MASTIC	WHITE /BLACK BROWN, CARPE	7	
MSS	\checkmark	01	BASECOVE/ MASTIC	4" BLUE/ BROWN		

ANALYTICAL METHOD: PLM

TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY 400 PT COUNT

DATA SENT TO:

1.

2.

3.

CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM QUESTIONS CALL: 510.658.8860

SPECIAL INSTRUCTIONS:

CHAIN OF CUSTODY: 12 00 NSFER SIGNATURE DATE/TIME ME RECEIVED JUN 2 8 2016 SILISTOR ER SIGNATURE DATE/TIME PRINTED NAME PRINTED NAME TRANSFER SIGNATURE DATE/TIME OF 13 PAGE

2984 Teagarden Street San Leandro, CA 94577

ASBESTOS BULK SAMPLE LOG

OFFICE 510.346.8860 FAX 888.653.8889

CLIENT: County of San Mateo

LOCATION: Maple Street Shelter

SAMPLED BY: CE

DATE: 06/27/16

PROJECT NUMBER: 161101003

CAC OR SST NO: 16-5602

BUILDING	Homo Area id	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)
MSS	W	01	VFT/MASTIC	9"x9" TAN,	BLACK	
MSS	ω	02				
MSS	ω	03	V	\checkmark		
MSS	Х	01	MASTIC	DARK BROWN, WALL PANE	2	
MSS	X	02	L.	V		
MSS	У	0	MASTIC/ GAOUT	TAN/WHITE 4" CERAMIC	WALL RR	
MSS	У	02	\checkmark	V		
MSS	2	01	VFT/MASTIC	12"XIZ" WHITE GRAY, BEIGE ST	EEAKS /YELLOW	
MSS	AA	01	VFT/MASTIC	GAAY, BETHE STO 12"x12" GRAY, WHITE STREAKS	ARIAN	
MSS	BВ	01	WALL PAPER	TAN, LINE TEXTURE		

ANALYTICAL METHOD: PLM

400 PT COUNT TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM

QUESTIONS CALL: 510.658.8860

SPECIAL INSTRUCTIONS:

DATA SENT TO:

CHAIN OF CUSTODY: 1. ANSFER SIGNATURE 2. SFER SIGNATURE 3. TRANSFER SIGNATURE 6 _OF___3 PAGE

has

(C. Hallister PRINTED NAME

ASBESTOS BULK SAMPLE LOG

OFFICE 510.346.8860 FAX 888.653.8889

CLIENT: County of San Mateo

Maple Street Shelter LOCATION:

SAMPLED BY:

DATE: 06/27 PROJECT NUMBER: __161101003

CAC OR SST NO: 16-5602

BUILDING	Homo Area id	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)
MSS	CC	0(MASTIC	YELLOW, GREEN (ARDET	
MSS	DD	01	BASECONE/ MASTIC	4" RED/BRUN	m)	
MSS	EE	01	VFT/MASTIC	Terran		
MSS	FF	01	MASTIC/ LEVERING	BLACK, residual		
MSS	FF	02	\checkmark	\checkmark		
MSS	GG	01	TEXTURE	WHITE, SMALL		
MSS	GG	οζ				
MSS	GG	03				
MSS	<i>4</i> 6	04				
MSS	66	05	\checkmark	\checkmark		

ANALYTICAL METHOD: PLM DATA SENT TO:

400 PT COUNT.

TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY

CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM QUESTIONS CALL: 510.658.8860

SPECIAL INSTRUCTIONS:

CHAIN OF CUSTODY: 1. SFER SIGNATURE 2. R SIGNATURE 3. TRANSFER SIGNATURE 3 7_OF___ PAGE

Sottallider PRINTED NAME

DATE TIME RECEIVED DATE 8 20/8 DATEXTIME WY ZL

ASBESTOS BULK SAMPLE LOG

2984 TEAGARDEN STREET SAN LEANDRO, CA 94577 OFFICE 510.346.8860 FAX 888.653.8889

County of San Mateo CLIENT:

DATE: 06/2

Maple Street Shelter LOCATION:

SAMPLED BY: CE

PROJECT NUMBER: 161101003

CAC OR SST NO: 16 - 5602

BUILDING	Homo Area id	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)
MSS	HH	01	VFT/MASTIC	12"x12" BLUE		
MSS	II	01	VSF/MASTIC	BLACK, YETU BLUE/TAN, GRAY		
MSS	JJ	01	PLASTER	WHITE, CEILING		
MSS	JJ	02				
MSS	JJ	03				
MSS	JJ	04				
MSS	JJ	os	V	\checkmark		
MSS	KK	01	MASTIC	6" GRAY/TAI	J	
MSS	LL	01	BASECOVE/ MASTIC	6" BLACK/ WHITE YELLOW/WHI		
MSŚ	MM	01	MASTIC/ LEVELING	YELLOW/WHI	TE	

ANALYTICAL METHOD: PLM

TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY

DATA SENT TO:

CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM QUESTIONS CALL: 510.658.8860

SPECIAL INSTRUCTIONS:

CHAIN OF CUSTODY: 1. NSFER SIGNATURE 2. SIGNATURE RANS 3. TRANSFER SIGNATURE PAGE OF_

400 PT COUNT

DILISTER RINTED NAME

PM 06/28 DATE TIME RECEIVED 2 8 2018 DATE/TIME DATE/TIME WY

ASBESTOS BULK SAMPLE LOG

OFFICE 510.346.8860 FAX 888.653.8889

DATE: 06/27/16

CLIENT: County of San Mateo

LOCATION: Maple Street Shelter

PROJECT NUMBER: 161101003

SAMPLED BY: CE

CAC OR SST NO:	16	-5	602	>

BUILDING	Homo Area id	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)
MSS	00	01	VS FMASTIC	WOOD GRAIN/ BLACK		
MSS	PP	01	VFT/MASTIC	12"×12" GRAY/BLACK		
MSS	QQ	0	VFT/MASTIC	12"x12" GREEN/BLACK		
MSS	RR	01	GROUT/ MORTAR	WHITE/GRAY		
MSS	SS	01	MASTIC	TAN, MIRROR WHITE/GRA		
MSS	TT	01	PAINT/STUCIO		1/	
MSS	TT	02	J.	\checkmark		
MSS	uu	01	PAINT/ CONCRETE	WHITE/GRAY		
MSS	UU	02	\checkmark	\checkmark		
MSS	VV	01	PAINT	BROWN, BETGE WOUD		

ANALYTICAL METHOD: PLM DATA SENT TO:

400 PT GOUNT

TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY

CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM QUESTIONS CALL: 510.658.8860

SPECIAL INSTRUCTIONS:

CHAIN OF CUSTODY: 1. SFER SIGNATURE 2. GINATURE 3. TRANSFER SIGNATURE PAGE 13 OF_

S.Hollider PRINTED NAME

ASBESTOS BULK SAMPLE LOG

OFFICE 510.346.8860 FAX 888.653.8889

County of San Mateo CLIENT:

DATE: 06/27/16

LOCATION: Maple Street Shelter

SAMPLED BY: CE

2984 TEAGARDEN STREET

SAN LEANDRO, CA 94577

PROJECT NUMBER: 161101003

CAC OR SST NO: 16-5602

BUILDING	Homo Area id	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)
MSS	WW	01	ROOF	TAN, 3 TAR ASONAL	т	
MSS	XX	0	MASTIC	3 TAB ASPHAL BLACK + GRAY	/	
MSS	Xχ	02	\checkmark	\checkmark		
MSS	уу	01	CONCRETE	GRAY, SIDEWALK, PR	9776	
MSS	уу	02	\checkmark	\checkmark		
MSS	22	0	CONCRETE	GRAY, FanoAstor		
MSS	22	02	\checkmark	\checkmark		
MSS	A3	01	INSULATION		Reck	
MSS	B3	0(SEALANT	PAPER FIRE C WHITE, BLACK		
MSS	B3	02	\checkmark	V		

ANALYTICAL METHOD: PLM

400 PT COUNT- TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY

DATA SENT TO:

CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM QUESTIONS CALL: 510.658.8860

SPECIAL INSTRUCTIONS:

CHAIN OF CUSTODY: 1. NSFER SIGNATURE 2. SIGNATURE 3. TRANSFER SIGNATURE PAGE 0 [3 OF_

DIJSHER PRINTED NAME

ASBESTOS BULK SAMPLE LOG

2984 TEAGARDEN STREET SAN LEANDRO, CA 94577 OFFICE 510.346.8860 FAX 888.653.8889

DATE: 06/27/16

County of San Mateo CLIENT:

Maple Street Shelter LOCATION:

PROJECT NUMBER: 161101003

CE SAMPLED BY:

CAC OR SST NO: 16 5602

BUILDING	Homo Area id	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)
MSS	C3	01	PUTTY	GRAY, EXTERIOR		
MSS	C3	02	V	V		
MSS	D3	01	SEALANT	WHITE, GRAY		
MSS	D3	02	\checkmark	\checkmark		
MSS	E3	0(SEALANT	BLACK, BUS SHEZTER	2	
MSS	F3	01	SEALANT	WHITE, WALL FLASH		
MSS	63	01	CONCRETE	GRAT, BUS PLATFORM		
MSS	H3	01	WALL PANEL	BETGE, WHITE		e:
MSS	H3	02	\checkmark	\checkmark		2
MSS	I3	01	INSULATION	BROWN, WOOD DOOR	-	

ANALYTICAL METHOD: PLM_ 400 PT COUNT DATA SENT TO:

TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY

CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM

QUESTIONS CALL: 510.658.8860

SPECIAL INSTRUCTIONS:

CHAIN OF CUSTODY: 1. TRA FERSIGNATURE W 2. ER SIGNATURE 3. _ TRANSFER SIGNATURE

PAGE_ 1 __OF___ 3 __

PRINTED NAME

TED NAME

06/28 DATEXTIME FIVED DATE/TIME DATE/TIME

ASBESTOS BULK SAMPLE LOG

OFFICE 510.346.8860 FAX 888.653.8889

CLIENT: County of San Mateo

DATE: 06/27

Maple Street Shelter LOCATION:

SAMPLED BY: CE

PROJECT NUMBER: 161101003

CAC OR SST NO: 16 - 5602

BUILDING	Homo Area id	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)
MSS	J3	01	PANEL	GRAY, CEMENT PANE	as	
MSS	J3	OZ	\checkmark	\checkmark		
MSS	K3	01	SEALANT	RED, FIRE STOP		
MSS	43	01	ROOF	TAN, 3 TAB ASPHAL	Г	
MSS	M3	01	PAINT	BETGE, WOOD		
MSS	NJ	01	ROOF	BLACK, 3 TAB ASPHA	ut	
MSS	03	01	SCALANT	3 TAB ASPHA WHITE, HUAC DUC	Ŧ	
MSS	03	02	\checkmark	\checkmark		
MSS	P3	01	FLEX JOINT	BLACK, HVAC		
MSS	QЗ	01	INSULATION	WHITE, ELBOUR		

ANALYTICAL METHOD: PLM 400 PT COUNT DATA SENT TO:

TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY

2

CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM QUESTIONS CALL: 510.658.8860

SPECIAL INSTRUCTIONS:

CHAIN OF CUSTODY: 1. SFER SIGNATURE SIGNATURE 3. TRANSFER SIGNATURE PAGE_12_OF__13_

PRINTED NAME

S. Hallister PRINTED NAME

ASBESTOS BULK SAMPLE LOG

510.346.8860 OFFICE FAX 888.653.8889

CLIENT: County of San Mateo

DATE: 06/27

Maple Street Shelter LOCATION:

PROJECT NUMBER: 161101003

CE SAMPLED BY:

CAC OR SST NO: 16-5602

BUILDING	Homo AREA ID	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)
MSS	Q3	02				
MSS	Q3	03	\checkmark	V		
MSS	R3	01	INSULATION	BLOWN IN		
MSS	53	01	INSULATION	WHITE, YEZLED 4" OD	J	
MSS	13	01	PAINT	WHITE, BLOWN IN WHITE, YEZLOU 4" OD BETGE, WOOD		
				CAMPLE	5	
			125	Sump		8
		12				

ANALYTICAL METHOD: PLM

400 PT COUNT

TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY

DATA SENT TO:

1.

2.

3.

CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM QUESTIONS CALL: 510.658.8860

SPECIAL INSTRUCTIONS:

CHAIN OF CUSTODY: ER SIGNATURE RSIGNATURE TRANSFER SIGNATURE

PAGE_ 3_OF_ 13 -

S. the III STER PRINTED NAME

TIME JUN 2 8 2016 DATEXTIME DATE/TIME

Reading No	ROOM	COMPONENT	SUBSTRATE	COLOR	CONDITION	Results	PbC	Units
1	SHUTTER_CAL						6.92	cps
2	CALIBRATE					Positive	1.1	mg / cm ^2
3	CALIBRATE					Positive	1.1	mg / cm ^2
4	CALIBRATE					Positive	1.2	mg / cm ^2
5	CALIBRATE					Positive	1.1	mg / cm ^2
6	ROOF	FLASHING	METAL	BEIGE	INTACT	Negative	0	mg / cm ^2
7	ROOF	DRAIN	METAL	GRAY	INTACT	Negative	0.5	mg / cm ^2
8	ROOF	HVAC	METAL	WHITE	INTACT	Negative	0	mg / cm ^2
9	ROOF	HVAC	METAL	WHITE	INTACT	Negative	0	mg / cm ^2
10	ROOF	SKY LIGHT	ASPHALT	SILVER	INTACT	Negative	0	mg / cm ^2
11	ROOF	ROOFING	ASPHALT	WHITE	INTACT	Negative	0	mg / cm ^2
12	ROOF	PIPE	METAL	WHITE	INTACT	Positive	80.6	mg / cm ^2
13	ROOF	PIPE	METAL	WHITE	INTACT	Positive	75.7	mg / cm ^2
14	ROOF	PIPE VENT	METAL	WHITE	INTACT	Negative	0.02	mg / cm ^2
15	ROOF	HVAC	METAL	GREEN	INTACT	Negative	0	mg / cm ^2
16	OUTSIDE	WALL	STUCCO	BEIGE	INTACT	Negative	0.01	mg / cm ^2
17	OUTSIDE	WALL	CONCRETE	BEIGE	INTACT	Negative	0	mg / cm ^2
18	OUTSIDE	DOOR	METAL	BEIGE	INTACT	Negative	0	mg / cm ^2
19	OUTSIDE	DOOR FRAME	METAL	PINK	INTACT	Negative	0.11	mg / cm ^2
20	OUTSIDE	DOOR FRAME	WOOD	PINK	INTACT	Negative	0	mg / cm ^2
21	OUTSIDE	DOOR	WOOD	BEIGE	INTACT	Negative	0	mg / cm ^2
22	OUTSIDE	WINDOW CASING	METAL	PINK	INTACT	Negative	0.18	mg / cm ^2
23	OUTSIDE	WINDOW FRAME	METAL	PINK	INTACT	Negative	0.07	mg / cm ^2
24	OUTSIDE	PIPE DRAIN	METAL	BEIGE	INTACT	Negative	0.01	mg / cm ^2
25	OUTSIDE	FENCE	PLASTIC	GREEN	INTACT	Negative	0.8	mg / cm ^2
27	OUTSIDE	OVERHANG	STUCCO	BEIGE	INTACT	Negative	0.05	mg / cm ^2
28	OUTSIDE	FASCIA	STUCCO	PINK	INTACT	Negative	0.03	mg / cm ^2
29	OUTSIDE	FLASHING	METAL	PINK	INTACT	Negative	0	mg / cm ^2
30	OUTSIDE	WALL	STUCCO	BEIGE	INTACT	Negative	0	mg / cm ^2
31	OUTSIDE	WALL	CONCRETE	BEIGE	INTACT	Negative	0	mg / cm ^2

1

Reading No	ROOM	COMPONENT	SUBSTRATE	COLOR	CONDITION	Results	PbC	Units
32	OUTSIDE	COLUMN	CONCRETE	BEIGE	INTACT	Negative	0	mg / cm ^2
33	OUTSIDE	CONDUIT	METAL	BEIGE	INTACT	Negative	0	mg / cm ^2
34	OUTSIDE	WINDOW CASING	METAL	PINK	INTACT	Negative	0.1	mg / cm ^2
35	OUTSIDE	COLUMN	WOOD	PINK	INTACT	Negative	0	mg / cm ^2
36	OUTSIDE	BEAM	WOOD	PINK	INTACT	Negative	0	mg / cm ^2
37	OUTSIDE	BEAM	WOOD	PINK	INTACT	Negative	0	mg / cm ^2
38	OUTSIDE	FASCIA	WOOD	PINK	INTACT	Negative	0	mg / cm ^2
39	OUTSIDE	OVERHANG	PLASTIC	BEIGE	INTACT	Negative	0	mg / cm ^2
40	OUTSIDE	RAILING	METAL	BLACK	INTACT	Negative	0	mg / cm ^2
41	OUTSIDE	BENCH	WOOD	GREEN	DETERIORATED	Negative	0	mg / cm ^2
42	OUTSIDE	BENCH	METAL	PINK	INTACT	Negative	0	mg / cm ^2
43	OUTSIDE	RAILING	METAL	BLUE	INTACT	Negative	0	mg / cm ^2
44	OUTSIDE	BENCH	WOOD	GRAY	INTACT	Negative	0.01	mg / cm ^2
45	OUTSIDE	WALL PANEL	METAL	WHITE	INTACT	Negative	0.13	mg / cm ^2
46	OUTSIDE	DOOR	METAL	BEIGE	INTACT	Negative	0	mg / cm ^2
47	OUTSIDE	DOOR FRAME	METAL	BEIGE	INTACT	Negative	0	mg / cm ^2
48	OUTSIDE	DOOR FRAME	WOOD	PINK	INTACT	Negative	0	mg / cm ^2
49	OUTSIDE	FENCE	WOOD	VARNISH	INTACT	Negative	0	mg / cm ^2
50	OUTSIDE	WALL	WOOD	BEIGE	INTACT	Negative	0	mg / cm ^2
51	OUTSIDE	DOOR	WOOD	BEIGE	INTACT	Negative	0	mg / cm ^2
52	OUTSIDE	COLUMN	METAL	PINK	INTACT	Negative	0	mg / cm ^2
53	OUTSIDE	WALL	CONCRETE	BEIGE	INTACT	Negative	0.01	mg / cm ^2
54	OUTSIDE	DOOR	METAL	BEIGE	INTACT	Negative	0.26	mg / cm ^2
55	OUTSIDE	DOOR FRAME	METAL	PINK	INTACT	Negative	0.08	mg / cm ^2
56	OUTSIDE	CONDUIT	METAL	BEIGE	INTACT	Negative	0.01	mg / cm ^2
57	OUTSIDE	WINDOW SILL	CONCRETE	BEIGE	INTACT	Negative	0.01	mg / cm ^2
58	OUTSIDE	DOOR	METAL	BLUE	INTACT	Negative	0.02	mg / cm ^2
59	OUTSIDE	DOOR	METAL	GREEN	INTACT	Negative	0.14	mg / cm ^2
60	OUTSIDE	WALL	CONCRETE	BEIGE	INTACT	Negative	0	mg / cm ^2
61	OUTSIDE	WALL	STUCCO	BEIGE	INTACT	Negative	0	mg / cm ^2

Reading No	ROOM	COMPONENT	SUBSTRATE	COLOR	CONDITION	Results	PbC	Units
62	OUTSIDE	COLUMN	CONCRETE	BEIGE	INTACT	Negative	0	mg / cm ^2
63	OUTSIDE	WINDOW FRAME	METAL	PINK	INTACT	Negative	0.16	mg / cm ^2
64	OUTSIDE	STORAGE	WOOD	BEIGE	INTACT	Negative	0	mg / cm ^2
65	OUTSIDE	WALL PANEL	METAL	WHITE	INTACT	Negative	0.08	mg / cm ^2
66	CALIBRATE					Positive	1	mg / cm ^2
67	CALIBRATE					Positive	1	mg / cm ^2
68	CALIBRATE					Positive	1.2	mg / cm ^2
69	KITCHEN	WALL	VINYL	WHITE	INTACT	Negative	0	mg / cm ^2
70	KITCHEN	WINDOW FRAME	WOOD	WHITE	INTACT	Negative	0	mg / cm ^2
71	KITCHEN	DOOR FRAME	METAL	WHITE	DETERIORATED	Negative	0	mg / cm ^2
72	KITCHEN	DOOR FRAME	WOOD	WHITE	DETERIORATED	Negative	0	mg / cm ^2
73	KITCHEN	WALL	METAL	WHITE	INTACT	Negative	0	mg / cm ^2
74	KITCHEN	WALL	DRYWALL	WHITE	INTACT	Negative	0.06	mg / cm ^2
75	KITCHEN	SINK	CERAMIC	WHITE	INTACT	Negative	0.1	mg / cm ^2
76	KITCHEN	VENT	METAL	WHITE	INTACT	Negative	0.04	mg / cm ^2
77	KITCHEN	WINDOW FRAME	WOOD	WHITE	INTACT	Negative	0	mg / cm ^2
78	KITCHEN	CEILING	DRYWALL	WHITE	INTACT	Negative	0.02	mg / cm ^2
79	KITCHEN	TRIM	WOOD	WHITE	INTACT	Negative	0	mg / cm ^2
80	KITCHEN	WALL	DRYWALL	WHITE	INTACT	Negative	0.02	mg / cm ^2
81	DINING ROOM	WALL	DRYWALL	TAN	INTACT	Negative	0.04	mg / cm ^2
82	DINING ROOM	WALL	CONCRETE	TAN	INTACT	Negative	0	mg / cm ^2
83	DINING ROOM	WINDOW FRAME	METAL	TAN	INTACT	Negative	0	mg / cm ^2
84	DINING ROOM	WALL	WOOD	TAN	INTACT	Negative	0	mg / cm ^2
85	DINING ROOM	WALL PANEL	WOOD	TAN	INTACT	Negative	0	mg / cm ^2
86	DINING ROOM	DOOR FRAME	WOOD	TAN	INTACT	Negative	0.01	mg / cm ^2
87	DINING ROOM	CEILING TILE	WOOD	WHITE	INTACT	Negative	0	mg / cm ^2
88	DINING ROOM	DOOR	METAL	BLACK	INTACT	Negative	0	mg / cm ^2
89	SUPPLY	WALL	DRYWALL	WHITE	INTACT	Negative	0.01	mg / cm ^2
90	SUPPLY	FLOOR	CONCRETE	GRAY	INTACT	Negative	0	mg / cm ^2
91	SUPPLY	WALL	CONCRETE	WHITE	INTACT	Negative	0	mg / cm ^2

Reading No	ROOM	COMPONENT	SUBSTRATE	COLOR	CONDITION	Results	PbC	Units
92	SUPPLY	CEILING	DRYWALL	WHITE	INTACT	Negative	0	mg / cm ^2
93	SUPPLY	WALL	DRYWALL	YELLOW	INTACT	Negative	0.01	mg / cm ^2
94	SUPPLY	REFRIDGERATOR	METAL	SILVER	INTACT	Negative	-0.14	mg / cm ^2
95	HOBBY ROOM	WALL PANEL	WOOD	TAN	INTACT	Negative	0	mg / cm ^2
96	HOBBY ROOM	WALL	DRYWALL	TAN	INTACT	Negative	0.04	mg / cm ^2
97	HOBBY ROOM	DOOR	WOOD	VARNISH	INTACT	Negative	0	mg / cm ^2
98	HOBBY ROOM	CEILING TILE	WOOD	WHITE	INTACT	Negative	0	mg / cm ^2
99	DINING ROOM	FLOOR	VINYL	WHITE	INTACT	Negative	0	mg / cm ^2
100	DAY ROOM	FLOOR	DRYWALL	WHITE	INTACT	Negative	0	mg / cm ^2
101	TH OFFICE	DOOR	WOOD	VARNISH	INTACT	Negative	0	mg / cm ^2
102	TH OFFICE	CONDUIT	METAL	GRAY	INTACT	Negative	0	mg / cm ^2
103	TH OFFICE	WALL	DRYWALL	WHITE	INTACT	Negative	0	mg / cm ^2
104	TH OFFICE	WALL	CONCRETE	WHITE	INTACT	Negative	0.02	mg / cm ^2
105	TH OFFICE	DOOR FRAME	METAL	WHITE	INTACT	Negative	0	mg / cm ^2
106	TH OFFICE	DOOR	METAL	WHITE	INTACT	Negative	0.01	mg / cm ^2
109	TH OFFICE	WINDOW FRAME	METAL	WHITE	INTACT	Negative	0	mg / cm ^2
110	TH OFFICE	VENT	METAL	WHITE	INTACT	Negative	0	mg / cm ^2
111	BEDROOM	WINDOW FRAME	METAL	WHITE	INTACT	Negative	0.01	mg / cm ^2
112	INMATE RESTROOM	WALL	CERAMIC	YELLOW	INTACT	Positive	7.1	mg / cm ^2
113	INMATE RESTROOM	WALL	CERAMIC	YELLOW	INTACT	Positive	7.5	mg / cm ^2
114	INMATE RESTROOM	SINK	CERAMIC	WHITE	INTACT	Positive	2.1	mg / cm ^2
115	INMATE RESTROOM	TOILET	CERAMIC	WHITE	INTACT	Negative	0.13	mg / cm ^2
116	INMATE RESTROOM	STALL	METAL	WHITE	INTACT	Negative	0	mg / cm ^2
117	HALLWAY	WALL	DRYWALL	BLUE	INTACT	Negative	0	mg / cm ^2
118	HALLWAY	WALL	DRYWALL	YELLOW	INTACT	Negative	0	mg / cm ^2
119	OFFICE 4	WALL	DRYWALL	BLUE, DARK	INTACT	Negative	0.3	mg / cm ^2
120	SECRETARY 6	WALL	DRYWALL	BLUE, DARK	INTACT	Negative	0	mg / cm ^2
121	STAFF	WALL	DRYWALL	BLUE, LIGHT	INTACT	Negative	0.01	mg / cm ^2
122	STAFF	WINDOW FRAME	METAL	BLUE, LIGHT	INTACT	Negative	0.01	mg / cm ^2
123	STAFF	WALL	CONCRETE	BLUE, LIGHT	INTACT	Negative	0.03	mg / cm ^2

Reading No	ROOM	COMPONENT	SUBSTRATE	COLOR	CONDITION	Results	PbC	Units
124	STORAGE	BASEBOARD	WOOD	WHITE	INTACT	Negative	0	mg / cm ^2
125	HALLWAY	TRIM	WOOD	VARNISH	INTACT	Negative	0	mg / cm ^2
126	LOUNGE	FLOOR	VINYL	BROWN	INTACT	Negative	0.01	mg / cm ^2
127	LOUNGE	WALL	DRYWALL	ORANGE	INTACT	Negative	0.02	mg / cm ^2
128	LOUNGE	WALL PANEL	WOOD	ORANGE	INTACT	Negative	0	mg / cm ^2
129	CORRIDOOR	WALL PANEL	WOOD	GREEN	INTACT	Negative	0	mg / cm ^2
130	CORRIDOOR	WALL PANEL	WOOD	GREEN	INTACT	Negative	0	mg / cm ^2
131	CORRIDOOR	WALL	DRYWALL	WHITE	INTACT	Negative	0.01	mg / cm ^2
132	CORRIDOOR	WALL	CONCRETE	WHITE	INTACT	Negative	0.02	mg / cm ^2
133	CORRIDOOR	DOOR FRAME	METAL	WHITE	INTACT	Negative	0	mg / cm ^2
134	COMMON AREA	FLOOR	VINYL	BLUE	INTACT	Negative	0	mg / cm ^2
135	COMMON AREA	FLOOR	VINYL	BEIGE	INTACT	Negative	0.02	mg / cm ^2
136	COMMON AREA	DRAIN	METAL	GOLD	INTACT	Positive	14	mg / cm ^2
137	COMMON AREA	CABINET	WOOD	GREEN	INTACT	Negative	0	mg / cm ^2
138	COMMON AREA	HVAC DUCT	METAL	WHITE	INTACT	Negative	0	mg / cm ^2
139	COMMON AREA	CEILING	PLASTER	WHITE	INTACT	Negative	0	mg / cm ^2
140	COMMON AREA	PIPE	METAL	WHITE	INTACT	Negative	0	mg / cm ^2
141	EMERGENCY OFFICE	WALL	DRYWALL	BROWN	INTACT	Negative	-0.35	mg / cm ^2
142	EMERGENCY OFFICE	DOOR FRAME	METAL	BROWN	INTACT	Negative	0.07	mg / cm ^2
143	EMERGENCY OFFICE	CONDUIT	METAL	WHITE	INTACT	Negative	0	mg / cm ^2
144	EMERGENCY OFFICE	DOOR	WOOD	VARNISH	INTACT	Negative	0	mg / cm ^2
145	PANTRY	SHELF	WOOD	WHITE	INTACT	Negative	0	mg / cm ^2
146	PANTRY	CABINET	WOOD	RED	INTACT	Negative	0	mg / cm ^2
147	PANTRY	COUNTER	WOOD	WHITE	INTACT	Negative	0	mg / cm ^2
148	WOMENS RESTROOM	FLOOR	CERAMIC	BROWN	INTACT	Negative	0	mg / cm ^2
149	WOMENS RESTROOM	WALL	CERAMIC	YELLOW	INTACT	Positive	7.6	mg / cm ^2
150	WOMENS RESTROOM	COUNTER	CERAMIC	TAN	INTACT	Negative	0	mg / cm ^2
151	WOMENS RESTROOM	WALL	DRYWALL	PINK	INTACT	Negative	0	mg / cm ^2
152	WOMENS RESTROOM	STALL	METAL	BROWN	INTACT	Positive	2.8	mg / cm ^2
153	WOMENS RESTROOM	FLOOR	CONCRETE	GREEN	INTACT	Negative	0	mg / cm ^2

Reading No	ROOM	COMPONENT	SUBSTRATE	COLOR	CONDITION	Results	PbC	Units
154	WOMENS RESTROOM	FLOOR DRAIN	METAL	GRAY	INTACT	Positive	3.1	mg / cm ^2
155	WOMENS RESTROOM	SINK	CERAMIC	WHITE	INTACT	Negative	0	mg / cm ^2
156	WOMENS RESTROOM	TOILET	CERAMIC	WHITE	INTACT	Negative	0.01	mg / cm ^2
157	LAUNDRY.	WALL	DRYWALL	BEIGE	INTACT	Negative	0	mg / cm ^2
158	LAUNDRY.	FLOOR	VINYL	GRAY	INTACT	Negative	0	mg / cm ^2
159	LAUNDRY.	FLOOR	VINYL	GREEN	INTACT	Negative	0	mg / cm ^2
160	LAUNDRY.	DOOR	METAL	GRAY	INTACT	Negative	0.03	mg / cm ^2
161	LAUNDRY.	DOOR FRAME	METAL	GRAY	INTACT	Negative	0	mg / cm ^2
162	MENS RESTROOM	FLOOR	CERAMIC	BROWN	INTACT	Negative	0	mg / cm ^2
163	MENS RESTROOM	COUNTER	CERAMIC	TAN	INTACT	Negative	0	mg / cm ^2
164	MENS RESTROOM	WALL	CERAMIC	YELLOW	INTACT	Positive	6.6	mg / cm ^2
165	MENS RESTROOM	FLOOR	CONCRETE	GREEN	INTACT	Negative	0	mg / cm ^2
166	MENS RESTROOM	WALL	CERAMIC	WHITE	INTACT	Negative	0.04	mg / cm ^2
167	MENS RESTROOM	URINAL	CERAMIC	WHITE	INTACT	Positive	1.3	mg / cm ^2
168	MENS RESTROOM	STALL	METAL	BROWN	INTACT	Negative	0	mg / cm ^2
169	MENS RESTROOM	LOCKERS	METAL	BROWN	INTACT	Negative	0.09	mg / cm ^2
170	HALLWAY	LOCKERS	METAL	BROWN	INTACT	Negative	0.05	mg / cm ^2
171	MENS HOUSING	WALL	WOOD	WHITE	INTACT	Negative	0	mg / cm ^2
172	MENS HOUSING	FRAME	WOOD	GREEN	INTACT	Negative	0	mg / cm ^2
173	MENS HOUSING	DOOR FRAME	METAL	GREEN	INTACT	Negative	-0.04	mg / cm ^2
174	MENS HOUSING	WALL	WOOD	BROWN	INTACT	Negative	0.01	mg / cm ^2
175	MENS HOUSING	DOOR FRAME	WOOD	RED	INTACT	Negative	0	mg / cm ^2
176	MENS HOUSING	DOOR	METAL	RED	INTACT	Negative	0	mg / cm ^2
177	MENS HOUSING	DOOR FRAME	METAL	RED	INTACT	Negative	0	mg / cm ^2
178	MENS HOUSING	WALL	DRYWALL	GREEN	INTACT	Negative	0.01	mg / cm ^2
179	MENS HOUSING	WALL PANEL	DRYWALL	GREEN	INTACT	Negative	0.01	mg / cm ^2
180	MENS HOUSING	WALL PANEL	WOOD	GREEN	INTACT	Negative	0	mg / cm ^2
181	MENS HOUSING	LOCKERS	METAL	BROWN	INTACT	Negative	0	mg / cm ^2
182	MENS HOUSING	DOOR FRAME	METAL	BLUE	INTACT	Negative	0	mg / cm ^2
183	MENS HOUSING	DOOR FRAME	WOOD	BLUE	INTACT	Negative	0	mg / cm ^2

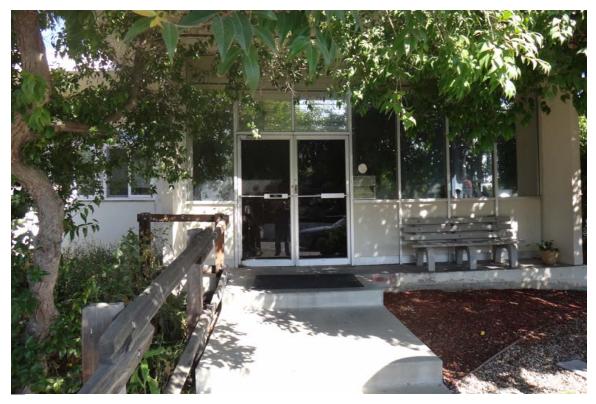
Reading No	ROOM	COMPONENT	SUBSTRATE	COLOR	CONDITION	Results	PbC	Units
184	MENS HOUSING	DOOR	METAL	WHITE	INTACT	Negative	0	mg / cm ^2
185	MENS HOUSING	WALL	DRYWALL	PINK	INTACT	Negative	-0.41	mg / cm ^2
186	MENS HOUSING	WALL	CONCRETE	PINK	INTACT	Negative	0.03	mg / cm ^2
187	MENS HOUSING	DOOR	METAL	BLUE	INTACT	Negative	0	mg / cm ^2
188	MENS HOUSING	DOOR FRAME	METAL	BLUE	INTACT	Negative	0	mg / cm ^2
189	MENS HOUSING	DOOR FRAME	WOOD	BLUE	INTACT	Negative	0	mg / cm ^2
190	WOMENS HOUSING	LOCKERS	METAL	BLUE, LIGHT	INTACT	Negative	0	mg / cm ^2
191	WOMENS HOUSING	WALL	WOOD	PURPLE	INTACT	Negative	0	mg / cm ^2
192	WOMENS HOUSING	FRAME	WOOD	WHITE	INTACT	Negative	0	mg / cm ^2
193	WOMENS HOUSING	WALL	DRYWALL	PURPLE	INTACT	Negative	0	mg / cm ^2
194	WOMENS HOUSING	WALL PANEL	WOOD	PURPLE	INTACT	Negative	0.03	mg / cm ^2
195	WOMENS HOUSING	DOOR FRAME	METAL	WHITE	INTACT	Negative	-0.31	mg / cm ^2
196	WOMENS HOUSING	WALL	WOOD	BLUE, LIGHT	INTACT	Negative	0	mg / cm ^2
197	WOMENS HOUSING	WALL	DRYWALL	BLUE, LIGHT	INTACT	Negative	0	mg / cm ^2
198	WOMENS HOUSING	WALL PANEL	WOOD	BLUE, LIGHT	INTACT	Negative	0	mg / cm ^2
199	PROGRAM DIRECTOR OFFICE	WALL	DRYWALL	BROWN	INTACT	Negative	0	mg / cm ^2
200	PROGRAM DIRECTOR OFFICE	WALL	CONCRETE	BROWN	INTACT	Negative	0.09	mg / cm ^2
201	CONFERENCE ROOM	WALL	DRYWALL	YELLOW	INTACT	Negative	-0.12	mg / cm ^2
202	CONFERENCE ROOM	WALL	DRYWALL	ORANGE	INTACT	Negative	0	mg / cm ^2
203	CONFERENCE ROOM	WALL	DRYWALL	BLUE, LIGHT	INTACT	Negative	0	mg / cm ^2
204	CONFERENCE ROOM	WALL	WOOD	BLUE, LIGHT	INTACT	Negative	0	mg / cm ^2
205	CALIBRATE					Positive	1	mg / cm ^2
206	CALIBRATE					Positive	1	mg / cm ^2
207	CALIBRATE					Positive	1.1	mg / cm ^2
208	SHUTTER_CAL						5.6	cps
209	CALIBRATE					Positive	1	mg / cm ^2
210	CALIBRATE					Positive	1	mg / cm ^2
211	CALIBRATE					Positive	1.1	mg / cm ^2
212	GENERATOR BLDG	WALL	WOOD	BEIGE	INTACT	Negative	0	mg / cm ^2
213	GENERATOR BLDG	DOOR	METAL	BEIGE	INTACT	Negative	0	mg / cm ^2

Reading No	ROOM	COMPONENT	SUBSTRATE	COLOR	CONDITION	Results	PbC	Units
214	GENERATOR BLDG	DOOR FRAME	WOOD	PINK	INTACT	Negative	0	mg / cm ^2
215	GENERATOR BLDG	VENT	WOOD	PINK	INTACT	Negative	0	mg / cm ^2
216	GENERATOR BLDG	OVERHANG	WOOD	PINK	INTACT	Negative	0	mg / cm ^2
217	GENERATOR BLDG	FASCIA	WOOD	PINK	INTACT	Negative	0	mg / cm ^2
218	GENERATOR BLDG	EAVE	WOOD	PINK	INTACT	Negative	0	mg / cm ^2
219	OUTSIDE	HAND RAIL	METAL	BLACK	DETERIORATED	Negative	0.01	mg / cm ^2
220	OUTSIDE	FENCE	WOOD	GREEN	INTACT	Negative	0	mg / cm ^2
221	OUTSIDE	FLOOR	CONCRETE	RED	INTACT	Negative	0	mg / cm ^2
222	OUTSIDE	FLOOR	CONCRETE	YELLOW	INTACT	Negative	0.01	mg / cm ^2
223	OUTSIDE	FLOOR	ASPHALT	YELLOW	INTACT	Positive	4.2	mg / cm ^2
224	OUTSIDE	FENCE	WOOD	RED	INTACT	Negative	0	mg / cm ^2
225	SHED	WALL	WOOD	BEIGE	INTACT	Negative	0	mg / cm ^2
226	SHED	TRIM	WOOD	WHITE	INTACT	Negative	0	mg / cm ^2
227	SHED	DOOR FRAME	WOOD	WHITE	INTACT	Negative	0	mg / cm ^2
228	SHED	DOOR	WOOD	WHITE	INTACT	Negative	0	mg / cm ^2
229	CALIBRATE					Positive	1	mg / cm ^2
230	CALIBRATE					Positive	1.1	mg / cm ^2
231	CALIBRATE					Positive	1.1	mg / cm ^2
232	CALIBRATE					Positive	1.2	mg / cm ^2

8

LIFEMOVES SHELTER 1580 Maple Street, Redwood City, CA

9"x9" Vinyl Floor Tile/Mastic


Wall Panel Mastic

Mastic/Grout

Texture Coat

Window Panel

Wallboard/Joint Compound