Worksheet for Calculating the Combination Flow and Volume Method

Instructions: After completing Section 1, make a copy of this Excel file for each Drainage Management Area within the project. Enter information specific to the project and DMA in the cells shaded in yellow. Cells shaded in light blue contain formulas and values that will be automatically calculated.

1.0 Project Information

1-1 Project Name:
1-2 City application ID:
1-3 Site Address or APN:
1-4 Tract or Parcel Map No:
1-5 Rainfall Region
1-6 Region Mean Annual Precipitation (MAP)
1-7 Site Mean Annual Precipitation (MAP)

The calculations presented here are based on the combination flow and volume sizing method provided in the Countywide Program's C. 3 Technical Guidance, Version 5.0 (2016). The steps presented below are explained in Section 5.1 of the Guidance, applicable portions of which are included in this file, in the sheet named "Guidance from Chapter 5 ".

2.0 Calculate Percentage of Impervious Surface for Drainage Management Area (DMA)

2-1 Name of DMA: \quad DMA 1

For items 2-2 and 2-3, enter the areas in square feet for each type of surface within the DMA.

	Type of Surface	Area of surface type within DMA (Sq. Ft.)	Adjust Pervious Surface	Effective Impervious Area
2-2	Impervious surface	64,093	1.0	64,093
2-3	Pervious surface	45,529	0.1	4,553
	Total DMA Area (square feet) =	109,622		

3.0 Calculate Unit Basin Storage Volume in Inches

Table 5-3. Unit Basin Storage Volumes in Inches for 80 Percent Capture Using 48-Hour Drawdowns, based on runoff coefficient

Region	Station, and Mean Annual Precipitation (Inches)	Runoff Coefficient of 1.0
1	Boulder Creek, 55.9"	2.04 "
2	La Honda, 24.4"	$0.86^{\prime \prime}$
3	Half Moon Bay, 25.92"	$0.82^{\prime \prime}$
4	Palo Alto, 14.6"	$0.64 "$
5	San Francisco, 21.0"	$0.73^{\prime \prime}$
6	San Francisco airport, 20.1"	$0.85 "$
7	San Francisco Oceanside, 19.3"	$0.72^{\prime \prime}$

5.0 Preliminary Estimate of Surface Area of Treatment Measure

5-1 4\% of DMA EIA (Item 2-4)	2745.8328	Square feet
3% of DMA EIA)	2059.3746	Square feet
5-3 Volume of treated runoff for area in Item 5- 2	3531.68	Cubic feet (Item 5-2 * 5 inches per hour * 1/12 * Item 4-2)

6.0 Initial Adjustment of Depth of Surface Ponding Area

6-1 Subtract Item 5-3 from Item 3-3
6-2 Divide Item 6-1 by Item 5-2
6-3 Convert Item 6-2 from feet to inches
-4 If ponding depth in Item 6-3 meets your target depth (recommend 6"), skip to Item 8-1. If not, continue to Step 7-1
(Note: Overflow outlet elevation should be set based on the calculated ponding depth.)

7.0 Optimize Size of Treatment Measure

7-1 Enter an area larger than Item 5-2	2150	Sq.ft. (enter larger area if you need less ponding depth.) Cubic feet (Item 7-1 * 5 inches per hour * 1/12 * Item 4-2)
7-2 Volume of treated runoff for area in Item 7. 1	3687.10	
7-3 Subtract Item 7-2 from Item 3-3	1021.81	Cubic feet (Amount of runoff to be stored in ponding area)
7-4 Divide Item 7-3 by Item 7-1	0.48	Feet (Depth of stored runoff in surface ponding area)
7-5 Convert Item 7-4 from ft. to inches	5.70	Inches (Depth of stored runoff in surface ponding area)

7-6 If the ponding depth in Item 7-5 meets target, stop here. If not, repeat Steps 7-1 through 7-5 until you obtain target depth.
(Note: Overflow outlet elevation should be set based on the calculated ponding depth.)

8.0 Surface Area of Treatment Measure for DMA

8-1 Final surface area of treatment

Worksheet for Calculating the Combination Flow and Volume Method

Instructions: After completing Section 1, make a copy of this Excel file for each Drainage Management Area within the project. Enter information specific to the project and DMA in the cells shaded in yellow. Cells shaded in light blue contain formulas and values that will be automatically calculated.

1.0 Project Information

1-1 Project Name:
1-2 City application ID:
1-3 Site Address or APN:
1-4 Tract or Parcel Map No:
1-5 Rainfall Region
1-6 Region Mean Annual Precipitation (MAP)
1-7 Site Mean Annual Precipitation (MAP)

The calculations presented here are based on the combination flow and volume sizing method provided in the Countywide Program's C. 3 Technical Guidance, Version 5.0 (2016). The steps presented below are explained in Section 5.1 of the Guidance, applicable portions of which are included in this file, in the sheet named "Guidance from Chapter 5 ".

2.0 Calculate Percentage of Impervious Surface for Drainage Management Area (DMA)

2-1 Name of DMA: \quad DMA 2

For items 2-2 and 2-3, enter the areas in square feet for each type of surface within the DMA.

	Type of Surface	Area of surface type within DMA (Sq. Ft.)	Adjust Pervious Surface	Effective Impervious Area
2-2	Impervious surface	73,263	1.0	73,263
2-3	Pervious surface	33,988	0.1	3,399
Total DMA Area (square feet) =		107,251		

3.0 Calculate Unit Basin Storage Volume in Inches

Table 5-3. Unit Basin Storage Volumes in Inches for 80 Percent Capture Using 48-Hour Drawdowns, based on runoff coefficient

Region	Station, and Mean Annual Precipitation (Inches)	Runoff Coefficient of 1.0
1	Boulder Creek, 55.9"	2.04 "
2	La Honda, 24.4"	$0.86^{\prime \prime}$
3	Half Moon Bay, 25.92"	$0.82^{\prime \prime}$
4	Palo Alto, 14.6"	$0.64 "$
5	San Francisco, 21.0"	$0.73^{\prime \prime}$
6	San Francisco airport, 20.1"	$0.85 "$
7	San Francisco Oceanside, 19.3"	$0.72^{\prime \prime}$

5.0 Preliminary Estimate of Surface Area of Treatment Measure

5-1 4\% of DMA EIA (Item 2-4)	3066.4856	Square feet
3% of DMA EIA)	2299.8642	Square feet
5-3 Volume of treated runoff for area in Item 52	3944.10	Cubic feet (Item 5-2 * 5 inches per hour * 1/12 * Item 4-2)

6.0 Initial Adjustment of Depth of Surface Ponding Area

6-1 Subtract Item 5-3 from Item 3-3
6-2 Divide Item 6-1 by Item 5-2
6-3 Convert Item 6-2 from feet to inches
-4 If ponding depth in Item 6-3 meets your target depth (recommend 6"), skip to Item 8-1. If not, continue to Step 7-1
(Note: Overflow outlet elevation should be set based on the calculated ponding depth.)

7.0 Optimize Size of Treatment Measure

7-1 Enter an area larger than Item 5-2	1950	Sq.ft. (enter larger area if you need less ponding depth.) Cubic feet (Item 7-1 * 5 inches per hour * 1/12 * Item 4-2)
7-2 Volume of treated runoff for area in Item 71	3344.11	
7-3 Subtract Item 7-2 from Item 3-3	1914.69	Cubic feet (Amount of runoff to be stored in ponding area)
7-4 Divide Item 7-3 by Item 7-1	0.98	Feet (Depth of stored runoff in surface ponding area)
7-5 Convert Item 7-4 from ft. to inches	11.78	Inches (Depth of stored runoff in surface ponding area)

7-6 If the ponding depth in Item 7-5 meets target, stop here. If not, repeat Steps 7-1 through 7-5 until you obtain target depth.
(Note: Overflow outlet elevation should be set based on the calculated ponding depth.)

8.0 Surface Area of Treatment Measure for DMA

8-1 Final surface area of treatment

Worksheet for Calculating the Combination Flow and Volume Method

Instructions: After completing Section 1, make a copy of this Excel file for each Drainage Management Area within the project. Enter information specific to the project and DMA in the cells shaded in yellow. Cells shaded in light blue contain formulas and values that will be automatically calculated.

1.0 Project Information

1-1 Project Name:
1-2 City application ID:
1-3 Site Address or APN:
1-4 Tract or Parcel Map No:
1-5 Rainfall Region
1-6 Region Mean Annual Precipitation (MAP)
1-7 Site Mean Annual Precipitation (MAP)

The calculations presented here are based on the combination flow and volume sizing method provided in the Countywide Program's C. 3 Technical Guidance, Version 5.0 (2016). The steps presented below are explained in Section 5.1 of the Guidance, applicable portions of which are included in this file, in the sheet named "Guidance from Chapter 5 ".

2.0 Calculate Percentage of Impervious Surface for Drainage Management Area (DMA)

2-1 Name of DMA: \quad DMA 3

For items 2-2 and 2-3, enter the areas in square feet for each type of surface within the DMA.

	Type of Surface	Area of surface type within DMA (Sq. Ft.)	Adjust Pervious Surface	Effective Impervious Area
2-2	Impervious surface	4,902	1.0	4,902
2-3	Pervious surface	3,086	0.1	309
	Total DMA Area (square feet) =	7,988		
2-4	Total Effective Impervious Area (EIA)			5,211

3.0 Calculate Unit Basin Storage Volume in Inches

Table 5-3. Unit Basin Storage Volumes in Inches for 80 Percent Capture Using 48-Hour Drawdowns, based on runoff coefficient

Region	Station, and Mean Annual Precipitation (Inches)	Runoff Coefficient of 1.0
1	Boulder Creek, 55.9"	2.04 "
2	La Honda, 24.4"	$0.86^{\prime \prime}$
3	Half Moon Bay, 25.92"	$0.82^{\prime \prime}$
4	Palo Alto, 14.6"	$0.64 "$
5	San Francisco, 21.0"	$0.73^{\prime \prime}$
6	San Francisco airport, 20.1"	$0.85 "$
7	San Francisco Oceanside, 19.3"	$0.72^{\prime \prime}$

5.0 Preliminary Estimate of Surface Area of Treatment Measure

5-1 4\% of DMA EIA (Item 2-4)	208.424	Square feet
3% of DMA EIA)	156.318	Square feet
5-3 Volume of treated runoff for area in Item 52	268.07	Cubic feet (Item 5-2 * 5 inches per hour * 1/12 * Item 4-2)

6.0 Initial Adjustment of Depth of Surface Ponding Area

6-1 Subtract Item 5-3 from Item 3-3
6-2 Divide Item 6-1 by Item 5-2
6-3 Convert Item 6-2 from feet to inches
if ponding depth in Item 6-3 meets your target depth (recommend 6"), skip to Item 8-1. If not, continue to Step 7-1.
(Note: Overflow outlet elevation should be set based on the calculated ponding depth.)

7.0 Optimize Size of Treatment Measure

7-1 Enter an area larger than Item 5-2	161	Sq.ft. (enter larger area if you need less ponding depth.) Cubic feet (Item 7-1 * 5 inches per hour * 1/12 * Item 4-2)
7-2 Volume of treated runoff for area in Item 71	276.10	
7-3 Subtract Item 7-2 from Item 3-3	81.33	Cubic feet (Amount of runoff to be stored in ponding area)
7-4 Divide Item 7-3 by Item 7-1	0.51	Feet (Depth of stored runoff in surface ponding area)
7-5 Convert Item 7-4 from ft . to inches	6.06	Inches (Depth of stored runoff in surface ponding area)

7-6 If the ponding depth in Item 7-5 meets target, stop here. If not, repeat Steps 7-1 through 7-5 until you obtain target depth.
(Note: Overflow outlet elevation should be set based on the calculated ponding depth.)

8.0 Surface Area of Treatment Measure for DMA

8-1 Final surface area of treatment

