

# **AEI Consultants**

**Environmental & Engineering Services** 

February 20, 2018

# ADDITIONAL SUBSURFACE INVESTIGATION & WATER WELL EVALUATION

Environmental & **Engineering Due** Diligence

## **Property Identification:**

Cypress Point Carlos Street and Sierra Street Moss Beach, San Mateo County, California 94038

AEI Project No. 350428

# **Energy Performance**

& Benchmarking

Site Investigation &

Remediation

### Prepared for:

Mr. Andrew Bielak MidPen Housing Corporation 303 Vintage Park Drive, Suite 250 Foster City, California 94404

Industrial Hygiene

### Prepared by:

**AEI Consultants** 3880 S. Bascom Avenue, Suite 109 San Jose, California 95124 (408) 559-7600

## Construction Consulting

Construction. Site Stabilization & Stormwater Services

**Zoning Analysis** Reports & ALTA Surveys

**National Presence** 

Regional Focus

Local Solutions

# **TABLE OF CONTENTS**

| 1.0 HEALTH            | AND SAFETY PLAN                                                       |
|-----------------------|-----------------------------------------------------------------------|
| 2.0 PERMIT            | TING AND UNDERGROUND SERVICES ALERT NOTIFICATION                      |
| 3.0 FIELD AG          | CTIVITIES                                                             |
| •                     | y Borings                                                             |
| 4.0 LABORA            | TORY ANALYSES                                                         |
| 5.0 FINDING           | SS                                                                    |
|                       | e Conditions                                                          |
| 6.0 CONCLU            | SIONS AND RECOMMENDATIONS                                             |
| 7.0 REFEREN           | NCES5                                                                 |
| 8.0 REPORT            | LIMITATIONS AND RELIANCE                                              |
|                       |                                                                       |
|                       | FIGURES                                                               |
| Figure 1<br>Figure 2  | Site Plan Confirmation Boring Locations                               |
|                       | TABLES                                                                |
| Table 1               | Soil Sample Data Summary                                              |
|                       | APPENDICES                                                            |
| Appendix A            | Boring Logs Chain of Custody and Cartified Analytical Papart          |
| Appendix B Appendix C | Chain-of-Custody and Certified Analytical Report Statistical Analysis |
| Appendix D            | Conceptual Site Drawings                                              |



### **Environmental & Engineering Services**

February 20, 2018

Mr. Andrew Bielak MidPen Housing Corporation 303 Vintage Park Drive, Suite 250 Foster City, California 94404

Re: Additional Subsurface Investigation & Water Well Evaluation Project Number 350428

**Cypress Point** 

**Carlos Street and Sierra Street** 

Moss Beach, San Mateo County, California 94038

Dear Mr. Bielak:

This report presents the results of the Additional Subsurface Investigation conducted by AEI Consultants (AEI) for the Cypress Point development project, located to the north of the intersection of Carlos Street and Sierra Street in Moss Beach, San Mateo County, California (the "Site"). This report has been prepared based on the conclusions and recommendations presented in AEI's *Limited Phase II Subsurface Investigation Report* dated February 15, 2016, as well as in accordance with AEI's proposal dated May 11, 2017 (AEI Proposal No. 52158).

During AEI's *Limited Phase II Subsurface Investigation*, thirty-four (34) exploratory borings (B-1 through B-34) were advanced at the Site. Soil samples obtained at the borings were analyzed for the presence of total petroleum hydrocarbons as gasoline (TPH-g), as diesel (TPH-d), and as motor oil (TPH-mo), as well as for polychlorinated biphenyls (PCBs), metals, total hexafurans, and other dioxins/furans (at few boring locations). Analytical results for soils showed concentrations of lead exceeding applicable San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) for any land use/any depth (for construction workers) and residential land use at the 0.0-foot depth at two (2) boring locations (B-7 and B-21). The horizontal extent of lead-impacted soils around these two (2) locations was undefined. The vertical extent of lead-impacted soils at these locations had been delineated based on lead concentrations not exceeding applicable RWQCB ESLs. The locations of the exploratory borings are shown on Figure 1.

An existing water supply well (upper well) also had been identified at the Site during the *Limited Phase II Subsurface Investigation*. The surface completion for this well was found to consist of a rusted, welded steel plate covering the top of the well casing that is encased within a rectangular-shaped, concrete pad. At the time of the Limited Phase II Subsurface Investigation, it was unknown if the well had been properly abandoned in accordance with San Mateo County Environmental Health (SMCEH) regulations.

Cypress Point

Carlos Street and Sierra Street Moss Beach, San Mateo County, California 94038

The purpose of this investigation was to assess the horizontal extent of lead-impacted soils around Borings B-7 and B-21 that were found to exceed applicable RWQCB ESLs. The scope of work included a limited drilling/confirmation sampling program and further inspection and evaluation of the existing water supply well for future abandonment purposes. Information regarding the methodology and results of the investigation is provided in the following sections of this report.

#### 1.0 HEALTH AND SAFETY PLAN

The Site-specific health and safety plan for this project was updated, reviewed by onsite personnel, and kept onsite for the duration of the fieldwork

#### 2.0 PERMITTING AND UNDERGROUND SERVICES ALERT NOTIFICATION

No drilling permit was required from SMCEH for this investigation.

Prior to conducting the drilling program, the planned boring locations were staked and marked with white paint. Upon marking the boring locations, Underground Services Alert (USA) North was contacted, who, in turn, notified subscribing utility companies for their underground utility locations to be marked along property boundaries and around planned boring locations. February 20, 2018

#### 3.0 FIELD ACTIVITIES

### 3.1 Exploratory Borings

The drilling program for this investigation was conducted on September 22, 2017. Six (6) exploratory borings (CS-1 through CS-6) were advanced to the 2.0-foot depth using a handauger. Borings CS-1 through CS-3 were positioned around existing Boring B-7. Borings CS-4 through CS-6 were positioned around existing Boring B-21. Upon completion of drilling, the borings were backfilled with soil cuttings generated during the drilling program. The locations of these borings are shown on Figure 2.

The borings were continuously sampled throughout their entire depths for the purposes of lithologic logging and selection of soil samples for laboratory analyses. Soil samples were obtained using a hand-driven, slide hammer that contained a core barrel lined with a 2-inch diameter by 6-inch long stainless-steel tube for each sample drive. Soil samples were obtained at the 0.0- and 1.5-foot depths at each boring. Upon retrieval from each sample depth interval, each liner was removed and prepared for laboratory analyses, as well as visually inspected for lithologic logging purposes. Recovered soil samples were examined for soil classification and described on detailed boring logs in general conformance with the Unified Soil Classification System (USCS). The boring logs are presented in Appendix A.

Soil samples selected for laboratory analyses were sealed, labeled, and entered onto chain of custody documentation for transportation to a California state-certified laboratory for analyses. Upon collection, the ends of the sample tubes were covered with Teflon tape and capped. The samples were labeled with the project name, project number, boring number, sample depth, and sampling date/time of sampling. After labeling, the samples were placed into a chilled ice chest containing crushed ice for transport to the analytical laboratory.



Cypress Point

Carlos Street and Sierra Street Moss Beach, San Mateo County, California 94038

### 3.2 Existing Water Well Evaluation

On October 2, 2017, the existing water well (upper well) was inspected by Wilkinson Well and Pump of Half Moon Bay, California. During their inspection, it was found that the top of the well was covered with tree branches and debris and the well cover had been removed. The driller attempted to obtain a depth-to-water measurement in the well, but could not do so because of blockage present at the 13.3-foot depth. The vertical extent of the blockage below this depth could not be assessed. The driller observed a section of broken or cracked well casing at the 5-foot depth. The driller also noted that the well was constructed with steel casing and contained an inner liner consisting of polyvinyl chloride (PVC) casing. The diameter of the PVC casing was approximately 5 inches. The depths of the outer steel casing and inner PVC casing could not be determined. The total depth of the well also could not be determined.

#### 4.0 LABORATORY ANALYSES

Soil samples obtained during the drilling program were submitted to McCampbell Analytical, Inc. of Pittsburg, California for laboratory analyses. Samples from the 0.0-foot depth were analyzed for the presence of lead using United States Environmental Protection Agency (USEPA) Method 6010. Additional samples from the 1.5-foot depth also were submitted to the analytical laboratory, and placed on hold. The samples were analyzed over a standard turnaround time (TAT). Chain-of-custody documentation and the certified analytical report are provided in Appendix B.

#### 5.0 FINDINGS

#### 5.1 Subsurface Conditions

The results from the drilling program show that the Site is underlain by residual soils primarily consisting of clayey and silty sands. These soils were similar to those soils encountered during AEI's previous investigation. No groundwater was encountered during drilling activities. No visual or olfactory evidence (i.e., soil discoloration, odor) of impacted soils was observed in any of the recovered soil cores during drilling operations.

#### 5.2 Analytical Results

Soil analytical results, along with the analytical results from the previous investigation, are presented on Table 1. As previously mentioned, chain-of-custody documentation and the certified analytical report are provided in Appendix B.

Lead was detected in each of the soil samples analyzed from the 0.0-foot depth in Borings CS-1 through CS-6. Detected concentrations of lead ranged between 13 and 290 milligrams per kilogram (mg/kg). Of these concentrations, lead was found to exceed its applicable RWQCB ESLs for residential land use and any land use/any depth (for construction workers) at only one (1) location, Boring CS-3 (at a concentration of 290 mg/kg), which lies slightly north of Boring B-7.

As discussed with MidPen Housing Corporation, the Site will be redeveloped for residential land use. During redevelopment, the entire Site will be graded and the potential exposure to lead-impacted soils will be removed. The elevated concentrations of lead within the area(s) around Boring CS-3, as well as around Boring B-21, will be graded during future redevelopment. The



Cypress Point

Carlos Street and Sierra Street Moss Beach, San Mateo County, California 94038

areas around Borings CS-1 and B-21 will be covered by community building and residential structure, respectively, as shown on the Conceptual Site Drawings presented in Appendix D.

Because of the anomalous, elevated concentration of lead detected in the surface soil sample at Boring CS-3, along with the non-detect and detected concentrations of lead in other samples analyzed during this investigation and the previous investigation, a statistical analysis for the lead concentrations in surface soils was performed consistent with the lead evaluation procedure identified under Section H of the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO) Note Number 4, DTSC-modified Screening Levels (DTSC-SLs), dated June 9, 2011. This statistical analysis was performed on a total of forty-four (44) soil samples that were generally obtained from the 0.0 and 1.5-foot depths (with the exception of a few samples obtained at depths as deep as 7 feet bgs), which exhibited both non-detectable and detectable concentrations of lead. The analysis was run using the USEPA's ProUCL Version 5.1 software to establish a representative Site-wide background concentration for lead and to evaluate potential human health risk.

The results of the statistical analysis show that the calculated 95% Adjusted Gamma Upper Confidence Level (UCL) for lead in surface soils at the Site is 42.04 mg/kg. This concentration is below applicable RWQCB ESLs for both residential use and any land use/any depth for construction workers. The RWQCB ESL for lead under a residential land use scenario is more conservative than the United States Environmental Protection Agency (USEPA) Regional Screening Levels (RSLs) for lead in resident soil. Furthermore, the RWQCB ESL is the same as the DTSC-recommended screening level for residential soil, as presented in Table 1 of DTSC's Hero Note No. 3. California Human Health Screening Level (CHHSL) for lead under a residential land use scenario. The USEPA RSL and CHHSL for lead under residential scenarios also were referenced in DTSC Hero Note No. 4. The results of the statistical analysis are presented in Appendix C. As previously mentioned above, the locations of Borings B-7 and B-21, where the elevated concentrations of lead were detected relative to the Conceptual Site Drawings are shown in Appendix D.

#### 6.0 CONCLUSIONS AND RECOMMENDATIONS

AEI completed an additional subsurface investigation and water well evaluation at the Site. The purpose of the investigation was to assess the extent of lead-impacted soils that were found to exceed applicable San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) for any land use/any depth (for construction workers) and residential land use. The investigation also was conducted to evaluate the potential human health risk relative to the lead concentrations detected in soils across the Site. In addition, the existing water well was inspected for future abandonment purposes. The well was found not to be properly abandoned in accordance with SMCEH regulations.

Six (6) shallow exploratory borings were advanced during this investigation. The borings were positioned around two (2) locations (Borings B-7 and B-21) where lead concentrations had been found to exceed applicable RWQCB ESLs during the previous investigation. Samples obtained from the 0.0-foot depth were analyzed for the presence of lead. Analytical results showed concentrations of lead that were below applicable RWQCB ESLs except for one (1) of the six (6) locations, where an anomalous, elevated concentration of lead was detected. Because of this outlier, a statistical analysis was performed to establish a representative Site-wide background concentration for lead,



Cypress Point

Carlos Street and Sierra Street Moss Beach, San Mateo County, California 94038

as well as to evaluate its potential human health risk in shallow soils. The results of the statistical analysis show that the calculated 95% Adjusted Gamma UCL for lead in shallow soils is 42.04 mg/kg.

Because the statistical analytical results show that the calculated UCL for lead is below its applicable RWQCB ESLs for both residential and construction worker scenarios, it is concluded that the lead concentrations in shallow soils across the Site do not pose a significant potential human health risk relative to the planned development. Furthermore, massive grading will occur at the Site during redevelopment activities. Because of the planned grading, areas of localized elevated lead concentrations around Borings B-7 and B-21 will be mixed and further homogenized, further reducing the potential human health risks associated with shallow soils.

While no known environmental conditions have been identified, as a precautionary measure, it is recommended that a Site Management Plan (SMP) be developed to provide a framework for appropriately addressing potential environmental conditions, such as underground storage tanks (USTs) or other subsurface structures, that may be encountered during future development activities. The SMP will provide information regarding Site-specific conditions and previous investigation results, a summary of known and potential environmental conditions and contaminants of potential concern, provisions for a Site-specific health and safety plan (HASP), as well as odor, storm water, and noise control plans for worker protection, guidelines for sampling and managing impacted or potential-impacted soils that may be encountered (contingency plan), notification(s) to appropriate regulatory agency(ies), and documentation of environmental conditions encountered during Site development.

On the basis of the information, presented herein, no further investigation or remedial action is warranted at this time. It is recommended that the existing water supply well be properly destroyed in accordance with SMCEH regulations.

#### 7.0 REFERENCES

- AEI Consultants, 2015, *Limited Phase II Subsurface Investigation, Carlos Street at Sierra Street, Moss Beach, San Mateo County, California 94038*, report prepared for MidPen Housing Corporation dated February 15, 2016.
- California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO), 2018, *HERO Human Health Risk Assessment (HHRA) Note Number 3: DTSC-modified Screening Levels (DTSC-SLs)*, dated January 2018.
- California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO), 2011, *HERO Human Health Risk Assessment (HHRA) Note Number 3: Screening Level Human Health Risk Assessments*, dated June 9, 2011.
- California Regional Water Quality Control Board, San Francisco Bay Region, 2013, *User's Guide:*Derivation and Application of Environmental Screening Levels and Detailed Lookup

  Tables, Interim Final 2013.
- United States Environmental Protection Agency, 2016, *ProUCL: Statistical Support Software for Site Investigation and Evaluation*.



Cypress Point

Carlos Street and Sierra Street

Moss Beach, San Mateo County, California 94038

#### 8.0 REPORT LIMITATIONS AND RELIANCE

This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide the requested information, subject to scope of work for which AEI was retained and limitations inherent in this type of work, but it cannot be assumed that they are representative of areas not sampled. This report should not be regarded as a guarantee that no further contamination beyond that which could have been detected within the scope of this investigation is present beneath the subject property. Undocumented, unauthorized releases of hazardous material, the remains of which are not readily identifiable by visual inspection and are of different chemical constituents, are difficult and often impossible to detect within the scope of a chemical specific investigation.

Any conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document. These services were performed in accordance with generally accepted practices, in the environmental engineering and construction field, which existed at the time and location of the work. No other warranty, either expressed or implied, has been made.

This investigation was prepared for the sole use and benefit of MidPen Housing Corporation. All reports, both verbal and written, whether in draft or final, are for the benefit of Seagate Properties, Inc. This report has no other purpose and may not be relied upon by any other person or entity without the written consent of AEI. Either verbally or in writing, third parties may come into possession of this report or all or part of the information generated as a result of this work. In the absence of a written agreement with AEI granting such rights, no third parties shall have rights of recourse or recovery whatsoever under any course of action against AEI, its officers, employees, vendors, successors or assigns. Reliance is provided in accordance with AEI's Proposal and Standard Terms & Conditions executed by MidPen Housing Corporation. The limitation of liability defined in the Terms and Conditions is the aggregate limit of AEI's liability to the client and all relying parties.

If you have any questions or comments regarding this report, please do not hesitate to contact

me at (925) 746-6000.

Sincerely

Peter McIntyre, P.G. (7702) Executive Vice President

**AEI Consultants** 2500 Camino Diablo

Walnut Creek, California 94597



# **FIGURES**





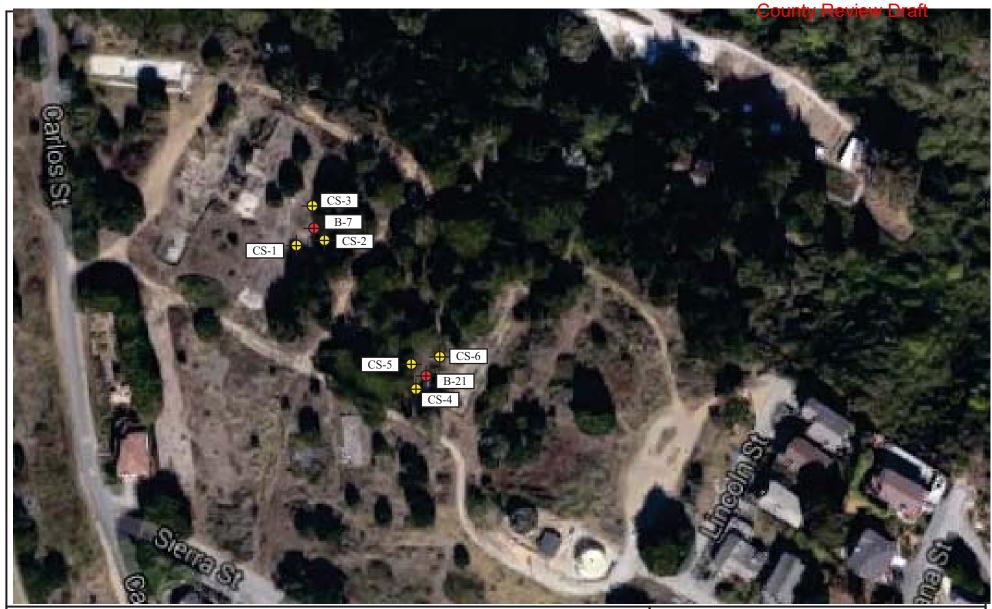
# LEGEND

— Approximate Property Boundary



Exploratory Boring




# **AEI CONSULTANTS**

3880 S. BASCOM AVENUE, SAN JOSE, CALIFORNIA

# SITE PLAN

Carlos Street at Sierra Street Moss Beach, California

FIGURE 1 Project No. 350428



# LEGEND



Exploratory Boring (AEI, 2015)



# **AEI CONSULTANTS**

3880 S. BASCOM AVENUE, SAN JOSE, CALIFONIA

# CONFIRMATION BORING LOCATIONS

Carlos Street at Sierra Street Moss Beach, California FIGURE 2 Project No. 350248

# **TABLES**



# TABLE 1: SOIL SAMPLE DATA SUMMARY Carlos Street at Sierra Street, Moss Beach, California 94038

| B-1-1.5<br>B-3-2.0<br>B-3-5.0<br>B-4-0.0<br>B-5-0.0<br>B-6-0.0<br>B-7-1.5<br>CS-1<br>CS-2<br>CS-3<br>B-8-0.0<br>B-10-0.0<br>B-11-0.0<br>B-12-5.0<br>B-13-6.0<br>B-14-2.0<br>B-15-0.0 | 12/22/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>9/22/2017<br>9/22/2017<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>12/22/2015 | 1.5<br>2<br>5<br>0<br>0<br>0<br>0<br>1.5<br>0 | 4.5<br><br><br>29<br>54<br>8.4<br><b>230</b><br>7<br>36<br>13<br><b>290</b> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|
| B-3-2.0<br>B-3-5.0<br>B-4-0.0<br>B-5-0.0<br>B-6-0.0<br>B-7-1.5<br>CS-1<br>CS-2<br>CS-3<br>B-8-0.0<br>B-9-0.0<br>B-11-0.0<br>B-11-5.0<br>B-13-6.0<br>B-14-2.0<br>B-15-0.0             | 12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>9/22/2017<br>9/22/2017<br>9/22/2017<br>12/23/2015<br>12/23/2015<br>12/23/2015                | 2<br>5<br>0<br>0<br>0<br>1.5<br>0<br>0        | <br>29<br>54<br>8.4<br><b>230</b><br>7<br>36<br>13                          |
| B-3-5.0<br>B-4-0.0<br>B-5-0.0<br>B-6-0.0<br>B-7-1.5<br>CS-1<br>CS-2<br>CS-3<br>B-8-0.0<br>B-10-0.0<br>B-11-0.0<br>B-11-5.0<br>B-13-6.0<br>B-14-2.0<br>B-15-0.0                       | 12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2017<br>9/22/2017<br>9/22/2017<br>12/23/2015<br>12/23/2015                                           | 5<br>0<br>0<br>0<br>1.5<br>0<br>0             | 29<br>54<br>8.4<br><b>230</b><br>7<br>36<br>13                              |
| B-4-0.0<br>B-5-0.0<br>B-6-0.0<br>B-7-0.0<br>B-7-1.5<br>CS-1<br>CS-2<br>CS-3<br>B-8-0.0<br>B-10-0.0<br>B-11-0.0<br>B-11-5.0<br>B-13-6.0<br>B-14-2.0<br>B-15-0.0                       | 12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>9/22/2017<br>9/22/2017<br>9/22/2017<br>12/23/2015<br>12/22/2015                                                          | 0<br>0<br>0<br>1.5<br>0<br>0                  | 29<br>54<br>8.4<br><b>230</b><br>7<br>36<br>13                              |
| B-5-0.0<br>B-6-0.0<br>B-7-0.0<br>B-7-1.5<br>CS-1<br>CS-2<br>CS-3<br>B-8-0.0<br>B-10-0.0<br>B-11-0.0<br>B-11-5.0<br>B-13-6.0<br>B-14-2.0<br>B-15-0.0                                  | 12/23/2015<br>12/23/2015<br>12/23/2015<br>12/23/2015<br>9/22/2017<br>9/22/2017<br>9/22/2017<br>12/23/2015<br>12/22/2015                                                                        | 0<br>0<br>1.5<br>0<br>0                       | 54<br>8.4<br><b>230</b><br>7<br>36<br>13                                    |
| B-6-0.0 B-7-0.0 B-7-1.5 CS-1 CS-2 CS-3 B-8-0.0 B-9-0.0 B-10-0.0 B-11-0.0 B-11-5.0 B-13-6.0 B-14-2.0 B-15-0.0                                                                         | 12/23/2015<br>12/23/2015<br>12/23/2015<br>9/22/2017<br>9/22/2017<br>9/22/2017<br>12/23/2015<br>12/22/2015                                                                                      | 0<br>1.5<br>0<br>0                            | 8.4<br><b>230</b><br>7<br>36<br>13                                          |
| B-7-1.5<br>CS-1<br>CS-2<br>CS-3<br>B-8-0.0<br>B-9-0.0<br>B-10-0.0<br>B-11-0.0<br>B-12-5.0<br>B-13-6.0<br>B-14-2.0<br>B-15-0.0                                                        | 12/23/2015<br>9/22/2017<br>9/22/2017<br>9/22/2017<br>12/23/2015<br>12/22/2015                                                                                                                  | 1.5<br>0<br>0<br>0                            | 7<br>36<br>13                                                               |
| CS-1<br>CS-2<br>CS-3<br>B-8-0.0<br>B-9-0.0<br>B-10-0.0<br>B-11-0.0<br>B-12-5.0<br>B-13-6.0<br>B-14-2.0<br>B-15-0.0                                                                   | 9/22/2017<br>9/22/2017<br>9/22/2017<br>12/23/2015<br>12/22/2015                                                                                                                                | 0<br>0<br>0                                   | 36<br>13                                                                    |
| CS-2<br>CS-3<br>B-8-0.0<br>B-9-0.0<br>B-10-0.0<br>B-11-0.0<br>B-12-5.0<br>B-13-6.0<br>B-14-2.0<br>B-15-0.0                                                                           | 9/22/2017<br>9/22/2017<br>12/23/2015<br>12/22/2015                                                                                                                                             | 0<br>0                                        | 13                                                                          |
| CS-3  B-8-0.0 B-9-0.0 B-10-0.0 B-11-0.0 B-12-5.0 B-13-6.0 B-14-2.0 B-15-0.0                                                                                                          | 9/22/2017<br>12/23/2015<br>12/22/2015                                                                                                                                                          | 0                                             |                                                                             |
| B-8-0.0<br>B-9-0.0<br>B-10-0.0<br>B-11-0.0<br>B-12-5.0<br>B-13-6.0<br>B-14-2.0<br>B-15-0.0                                                                                           | 12/23/2015<br>12/22/2015                                                                                                                                                                       |                                               | 700                                                                         |
| B-9-0.0<br>B-10-0.0<br>B-11-0.0<br>B-12-5.0<br>B-13-6.0<br>B-14-2.0<br>B-15-0.0                                                                                                      | 12/22/2015                                                                                                                                                                                     |                                               | 230                                                                         |
| B-10-0.0<br>B-11-0.0<br>B-12-5.0<br>B-13-6.0<br>B-14-2.0<br>B-15-0.0                                                                                                                 |                                                                                                                                                                                                | 0                                             | 23                                                                          |
| B-11-0.0<br>B-12-5.0<br>B-13-6.0<br>B-14-2.0<br>B-15-0.0                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 6.5                                                                         |
| B-12-5.0<br>B-13-6.0<br>B-14-2.0<br>B-15-0.0                                                                                                                                         |                                                                                                                                                                                                | 0<br>0                                        | 45<br>6.2                                                                   |
| B-13-6.0<br>B-14-2.0<br>B-15-0.0                                                                                                                                                     | 12/22/2015<br>12/23/2015                                                                                                                                                                       | 5                                             | 0.2                                                                         |
| B-14-2.0<br>B-15-0.0                                                                                                                                                                 | 12/23/2015                                                                                                                                                                                     | 6                                             |                                                                             |
| B-15-0.0                                                                                                                                                                             | 12/23/2015                                                                                                                                                                                     | 2                                             |                                                                             |
|                                                                                                                                                                                      | 12/22/2015                                                                                                                                                                                     | 0                                             | 25                                                                          |
| B-15-7.0                                                                                                                                                                             | 12/23/2015                                                                                                                                                                                     | 7                                             |                                                                             |
| B-16-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 15                                                                          |
| B-17-4.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 4                                             |                                                                             |
| B-18-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 12                                                                          |
| B-19-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 7.9                                                                         |
| B-20-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 41                                                                          |
| B-20-1.5                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 1.5                                           | 8.1                                                                         |
| B-21-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 88                                                                          |
| B-21-1.5                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 1.5                                           | 8.8                                                                         |
| CS-4<br>CS-5                                                                                                                                                                         | 9/22/2017                                                                                                                                                                                      | 0                                             | 30<br>38                                                                    |
| CS-6                                                                                                                                                                                 | 9/22/2017<br>9/22/2017                                                                                                                                                                         | 0<br>0                                        | 53                                                                          |
| B-22-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 19                                                                          |
| B-23-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 15                                                                          |
| B-24-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 16                                                                          |
| B-25-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 8.9                                                                         |
| B-26-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 7.4                                                                         |
| B-27-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 6.3                                                                         |
| B-28-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 9.7                                                                         |
| B-29-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 8.7                                                                         |
| B-30-0.0                                                                                                                                                                             | 12/22/2015                                                                                                                                                                                     | 0                                             | 9.1                                                                         |
| B-31-0.0                                                                                                                                                                             | 12/22/2015<br>12/22/2015                                                                                                                                                                       | 0                                             | 7.8<br>7.0                                                                  |
| B-32-0.0<br>B-33-0.0                                                                                                                                                                 | 12/22/2015                                                                                                                                                                                     | 0<br>0                                        | 7.0<br>39                                                                   |
| B-33-0.0<br>B-34-0.0                                                                                                                                                                 | 12/22/2013                                                                                                                                                                                     | 0                                             | 23                                                                          |
| 5 5 1 0.0                                                                                                                                                                            | 12/22/2015                                                                                                                                                                                     |                                               | 34                                                                          |

RWQCB ESL residential 80 RWQCB ESL for any land use/any depth 160

#### Notes:

mg/kg milligrams per kilogram bgs below ground surface

**Bold** result exceeds applicable comparison value

- not analyzed

#### **Comparison Levels:**

RWQCB ESL

San Francisco Bay Regional Water Quality Control Board Environmental Screening Level assuming direct exposure human health risk levels for residential and any land use/any depth for construction worker (RWQCB, February 2016, Table S-1)

# APPENDIX A BORING LOGS





#### **AEI Consultants**

County Review Draft
BORING NUMBER CS-1
PAGE 1 OF 1

|             | Consult                          |           |                |                |                        |                                           |                                   |
|-------------|----------------------------------|-----------|----------------|----------------|------------------------|-------------------------------------------|-----------------------------------|
|             | ental & Engineering :  NT MidPen |           | orp.           |                |                        | PROJECT NAME Cypress Point                |                                   |
| PRO         | JECT NUMB                        | ER 35042  | 28             |                |                        | PROJECT LOCATION Carlos Street at Sie     | erra Street, Moss Beach, Californ |
| DAT         | ESTARTED_                        | 9/22/17   |                |                | COMPLETED 9/22/17      | GROUND ELEVATION H                        | OLE SIZE 2.25 inches              |
| DRIL        | LING CONT                        | RACTOR    |                |                |                        | GROUND WATER LEVELS:                      |                                   |
| DRIL        | LING METH                        | OD Hand A | Auger          |                |                        | AT TIME OF DRILLING                       |                                   |
| LOG         | GED BY W                         | вн        |                |                | CHECKED BY TGB         | AT END OF DRILLING                        |                                   |
| NOT         | ES                               |           |                |                |                        | AFTER DRILLING No groundwate              | er encountered                    |
| O DEPTH (#) | SAMPLE TYPE<br>NUMBER            | BLOW      | PID DATA (ppm) | GRAPHIC<br>LOG | M                      | ATERIAL DESCRIPTION                       | COMPLETION                        |
| _           | CS-1-0.5                         |           |                |                | CLAYEY SAND (SC<br>2.0 | ), brown, loose, dry, fine to medium sand |                                   |

Bottom of borehole at 2.0 feet.

AEI BORING - GINT STD US LAB, GDT - 11/13/17 14:55 - P. N.COMPANYWIDE PROJECTS/350000 SERIES/350428 MOSS BEACH, CANASI & WATER WELL EVALVASI REPORTVAPPENDICES/ASI SEPT 2017 BORING LOGS.GPJ



#### **AEI Consultants**

County Review Draft
BORING NUMBER CS-2
PAGE 1 OF 1

| Environm                                             | ental & Engineering   | Services   |                |                |                                  |                                                                  |                         |  |  |  |
|------------------------------------------------------|-----------------------|------------|----------------|----------------|----------------------------------|------------------------------------------------------------------|-------------------------|--|--|--|
| CLIEN                                                | NT MidPen I           | Housing Co | orp.           |                |                                  | PROJECT NAME Cypress Point                                       |                         |  |  |  |
| PROJ                                                 | PROJECT NUMBER 350428 |            |                |                |                                  | PROJECT LOCATION Carlos Street at Sierra Street, Moss Beach, Cal |                         |  |  |  |
| <b>DATE STARTED</b> 9/22/17 <b>COMPLETED</b> 9/22/17 |                       |            |                |                | PLETED 9/22/17                   | GROUND ELEVATION                                                 | HOLE SIZE 2.25 inches   |  |  |  |
| DRILL                                                | ING CONTR             | ACTOR      |                |                |                                  | GROUND WATER LEVELS:                                             |                         |  |  |  |
| DRILL                                                | ING METHO             | D Hand A   | Auger          |                |                                  | AT TIME OF DRILLING -                                            |                         |  |  |  |
| LOGG                                                 | SED BY WB             | Н          |                | CHE            | CKED BY TGB                      | AT END OF DRILLING                                               | -                       |  |  |  |
| NOTE                                                 | s                     |            |                |                |                                  | AFTER DRILLING No                                                | groundwater encountered |  |  |  |
| о DЕРТН<br>(ft)                                      | SAMPLE TYPE<br>NUMBER | BLOW       | PID DATA (ppm) | GRAPHIC<br>LOG | M                                | ATERIAL DESCRIPTION                                              | COMPLETION              |  |  |  |
| _                                                    | CS-2-0.5 CS-2-1.5     |            |                |                | CLAYEY SAND (SC grained sand 2.0 | ), brown, loose, moist, fine to med                              | lium                    |  |  |  |

Bottom of borehole at 2.0 feet.

AEI BORING - GINT STD US LAB. GDT - 11/13/17 14:55 - P. ICOMPANYWIDE PROJECTS/350000 SERIES/350428 MOSS BEACH, CAIASI & WATER WELL EVALVASI REPORTVAPPENDICES/ASI SEPT 2017 BORING LOGS. GPJ



CS-3-1.5

#### **AEI Consultants**

COUNTY Review Proff
BORING NUMBER CS-3
PAGE 1 OF 1

**CLIENT** MidPen Housing Corp. PROJECT NAME Cypress Point PROJECT NUMBER 350428 PROJECT LOCATION Carlos Street at Sierra Street, Moss Beach, California **DATE STARTED** 9/22/17 GROUND ELEVATION \_\_\_\_\_ HOLE SIZE \_2.25 inches **COMPLETED** 9/22/17 **DRILLING CONTRACTOR GROUND WATER LEVELS: DRILLING METHOD** Hand Auger AT TIME OF DRILLING \_---LOGGED BY WBH CHECKED BY TGB AT END OF DRILLING \_---NOTES AFTER DRILLING \_--- No groundwater encountered PID DATA (ppm) SAMPLE TYPE NUMBER GRAPHIC LOG BLOW COUNTS DEPTH (ft) MATERIAL DESCRIPTION COMPLETION CLAYEY SAND (SC), brown, loose, moist, fine to medium CS-3-0.5 grained sand, glass fragments

Bottom of borehole at 2.0 feet.

AEI BORING - GINT STD US LAB. GDT - 11/13/17 14:55 - P./COMPANYWIDE PROJECTS/350000 SERIES/350428 MOSS BEACH, CANASI & WATER WELL EVALVASI REPORTVAPPENDICESVASI SEPT 2017 BORING LOGS. GPJ



#### **AEI Consultants**

County Review Draft
BORING NUMBER CS-4
PAGE 1 OF 1

|              | nental & Engineering  |                 |                |                |                                      |                                          |                                          |  |  |  |
|--------------|-----------------------|-----------------|----------------|----------------|--------------------------------------|------------------------------------------|------------------------------------------|--|--|--|
| CLIE         | MidPen I              | Housing Co      | orp.           |                |                                      | PROJECT NAME Cypress Point               |                                          |  |  |  |
| PROJ         | IECT NUMBE            | R 350428        | 8              |                |                                      | PROJECT LOCATION Carlos Street           | at Sierra Street, Moss Beach, California |  |  |  |
| DATE         | STARTED               | 9/22/17         |                |                | COMPLETED 9/22/17                    | GROUND ELEVATION                         | HOLE SIZE 2.25 inches                    |  |  |  |
| DRILI        | LING CONTR            | ACTOR           |                |                |                                      | GROUND WATER LEVELS:                     |                                          |  |  |  |
| DRILI        | LING METHO            | <b>D</b> Hand A | Auger          |                |                                      | AT TIME OF DRILLING                      |                                          |  |  |  |
| LOGO         | GED BY WB             | Н               |                |                | CHECKED BY TGB                       | AT END OF DRILLING                       |                                          |  |  |  |
| NOTE         | :s                    |                 |                |                |                                      | AFTER DRILLING No groun                  | idwater encountered                      |  |  |  |
| O DEPTH (ft) | SAMPLE TYPE<br>NUMBER | BLOW            | PID DATA (ppm) | GRAPHIC<br>LOG | MA                                   | MATERIAL DESCRIPTION                     |                                          |  |  |  |
|              |                       |                 |                |                | SILTY SAND (SM), of grained sand 2.0 | dark brown, loose, moist, fine to medium | 1                                        |  |  |  |

Bottom of borehole at 2.0 feet.

AEI BORING - GINT STD US LAB. GDT - 11/13/17 14:55 - P.; COMPANYWIDE PROJECTS: 350000 SERIES: 350428 MOSS BEACH, CAASI & WATER WELL EVALASI REPORTAPPENDICESIASI SEPT 2017 BORING LOGS. GPJ

| AEI                                  |
|--------------------------------------|
| Environmental & Engineering Services |

| County Dovious Droft |
|----------------------|
| BORING NUMBER CS-5   |
| DOKING NUMBER 63-3   |
| PAGE 1 OF 1          |

| Consultants Environmental & Engineering Services | AEI Con                    | sultants                                 |                                                                        | .,,,,,,               |  |  |  |  |
|--------------------------------------------------|----------------------------|------------------------------------------|------------------------------------------------------------------------|-----------------------|--|--|--|--|
| CLIENT MidPen Housing Cor                        | p.                         |                                          | PROJECT NAME Cypress Point                                             |                       |  |  |  |  |
| PROJECT NUMBER 350428                            |                            |                                          | PROJECT LOCATION Carlos Street at Sierra Street, Moss Beach, Californi |                       |  |  |  |  |
| DATE STARTED 9/22/17                             | COM                        | PLETED 9/22/17                           | GROUND ELEVATION H                                                     | IOLE SIZE 2.25 inches |  |  |  |  |
| DRILLING CONTRACTOR                              |                            |                                          | _ GROUND WATER LEVELS:                                                 |                       |  |  |  |  |
| DRILLING METHOD Hand Au                          | uger                       |                                          | AT TIME OF DRILLING                                                    |                       |  |  |  |  |
| LOGGED BY WBH                                    | CHE                        | CKED BY TGB                              | AT END OF DRILLING                                                     |                       |  |  |  |  |
| NOTES                                            |                            |                                          | AFTER DRILLING No groundwat                                            | er encountered        |  |  |  |  |
| SAMPLE TYPE NUMBER COUNTS                        | PID DATA (ppm) GRAPHIC LOG | М                                        | ATERIAL DESCRIPTION                                                    | COMPLETION            |  |  |  |  |
| CS-5-0.5                                         |                            | loose                                    | dark brown, moist, fine to medium grained,                             |                       |  |  |  |  |
| CS-5-1.5                                         | <u> </u>                   | 2.0 SILTY SAND (SM), medium grained with | yellowish brown, moist, loose, fine to h cobbles                       |                       |  |  |  |  |

Bottom of borehole at 2.0 feet.

AEI BORING - GINT STD US LAB.GDT - 11/13/17 14:55 - P.\COMPANYWIDE PROJECTS\350000 SERIES\350428 MOSS BEACH, CAASI & WATER WELL EVALVASI REPORT\APPENDICES\ASI SEPT 2017 BORING LOGS.GPJ



#### **AEI Consultants**

| $C_{\Delta U}$ | nty [       | Daviou | Droft |             |
|----------------|-------------|--------|-------|-------------|
| cou            | ТДУТ        | ZEXIEW | JMBER | 00.0        |
|                | SUKI        | NG NL  | JMBEK | <b>CS-b</b> |
| _              | • • • • • • |        |       |             |

PAGE 1 OF 1

| Environm                     | nental & Engineering                                           | Services   |                |                |                                  |                                          |                                         |  |  |  |
|------------------------------|----------------------------------------------------------------|------------|----------------|----------------|----------------------------------|------------------------------------------|-----------------------------------------|--|--|--|
| CLIEN                        | MIT MidPen I                                                   | Housing Co | rp.            |                |                                  | PROJECT NAME Cypress Point               |                                         |  |  |  |
| PROJ                         | ECT NUMBE                                                      | ER_ 350428 | 3              |                |                                  | PROJECT LOCATION Carlos Street at        | t Sierra Street, Moss Beach, California |  |  |  |
| DATE                         | DATE STARTED         9/22/17         COMPLETED         9/22/17 |            |                |                |                                  | GROUND ELEVATION HOLE SIZE 2.25 inches   |                                         |  |  |  |
| DRILI                        | LING CONTR                                                     | RACTOR     |                |                |                                  | GROUND WATER LEVELS:                     |                                         |  |  |  |
| DRILI                        | LING METHO                                                     | D Hand A   | Auger          |                |                                  | AT TIME OF DRILLING                      |                                         |  |  |  |
| LOGGED BY WBH CHECKED BY TGB |                                                                |            |                |                | CKED BY TGB                      | AT END OF DRILLING                       |                                         |  |  |  |
| NOTE                         | S                                                              |            |                |                |                                  | AFTER DRILLING No ground                 | water encountered                       |  |  |  |
| O DEPTH                      | SAMPLE TYPE<br>NUMBER                                          | BLOW       | PID DATA (ppm) | GRAPHIC<br>LOG | M                                | ATERIAL DESCRIPTION                      | COMPLETION                              |  |  |  |
|                              |                                                                |            |                |                | SILTY SAND (SM), of grained sand | dark brown, loose, moist, fine to medium |                                         |  |  |  |
|                              |                                                                | ,          |                | 1 1 1 1        |                                  | tom of horehole at 2.0 feet              | <del>- '</del>                          |  |  |  |

AEI BORING - GINT STD US LAB.GDT - 11/13/17 14:55 - P.\COMPANYWIDE PROJECTS\350000 SERIES\350428 MOSS BEACH, CAASI & WATER WELL EVALVASI REPORT\APPENDICES\ASI SEPT 2017 BORING LOGS.GPJ

# APPENDIX B CHAIN-OF-CUSTODY AND CERTIFIED ANALYTICAL REPORT





# McCampbell Analytical, Inc.

"When Quality Counts"

# **Analytical Report**

**WorkOrder:** 1709A05

**Report Created for:** AEI Consultants

2500 Camino Diablo, Ste.#200

Walnut Creek, CA 94597

**Project Contact:** William Hicks

**Project P.O.:** 142989 **Project Name:** 350428

**Project Received:** 09/22/2017

Analytical Report reviewed & approved for release on 09/28/2017 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.



1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

# **Glossary of Terms & Qualifier Definitions**

**Client:** AEI Consultants

**Project:** 350428 **WorkOrder:** 1709A05

#### **Glossary Abbreviation**

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

#### **Quality Control Qualifiers**

F13 Indigenous sample results too high for a representative matrix spike analysis.



1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

# **Analytical Report**

Client: AEI Consultants

Date Received: 9/22/17 17:30

Date Prepared: 9/25/17

350428

**Project:** 

WorkOrder: 1709A05
Extraction Method: SW3050B
Analytical Method: SW6020
Unit: mg/Kg

|                 |                | Lead   |               |           |                   |                  |
|-----------------|----------------|--------|---------------|-----------|-------------------|------------------|
| Client ID       | Lab ID         | Matrix | Date Col      | lected    | Instrument        | Batch II         |
| CS-1-5          | 1709A05-001A   | Soil   | 09/22/201     | 7 08:34   | ICP-MS2 008SMPL.D | 146035           |
| <u>Analytes</u> | <u>Result</u>  |        | <u>RL</u>     | <u>DF</u> |                   | Date Analyzed    |
| Lead            | 36             |        | 0.50          | 1         |                   | 09/26/2017 22:30 |
| Surrogates      | <u>REC (%)</u> |        | <u>Limits</u> |           |                   |                  |
| Terbium         | 110            |        | 70-130        |           |                   | 09/26/2017 22:30 |
| Analyst(s): ND  |                |        |               |           |                   |                  |
| Client ID       | Lab ID         | Matrix | Date Col      | lected    | Instrument        | Batch II         |
| CS-2-5          | 1709A05-003A   | Soil   | 09/22/201     | 7 09:06   | ICP-MS2 009SMPL.D | 146035           |
| <u>Analytes</u> | Result         |        | <u>RL</u>     | <u>DF</u> |                   | Date Analyzed    |
| Lead            | 13             |        | 0.50          | 1         |                   | 09/26/2017 22:36 |
| Surrogates      | <u>REC (%)</u> |        | <u>Limits</u> |           |                   |                  |
| Terbium         | 100            |        | 70-130        |           |                   | 09/26/2017 22:36 |
| Analyst(s): ND  |                |        |               |           |                   |                  |
| Client ID       | Lab ID         | Matrix | Date Col      | lected    | Instrument        | Batch ID         |
| CS-3-5          | 1709A05-005A   | Soil   | 09/22/201     | 7 09:56   | ICP-MS2 010SMPL.D | 146035           |
| <u>Analytes</u> | <u>Result</u>  |        | <u>RL</u>     | <u>DF</u> |                   | Date Analyzed    |
| Lead            | 290            |        | 0.50          | 1         |                   | 09/26/2017 22:42 |
| Surrogates      | <u>REC (%)</u> |        | <u>Limits</u> |           |                   |                  |
| Terbium         | 103            |        | 70-130        |           |                   | 09/26/2017 22:42 |
| Analyst(s): ND  |                |        |               |           |                   |                  |
| Client ID       | Lab ID         | Matrix | Date Col      | lected    | Instrument        | Batch ID         |
| CS-4-5          | 1709A05-007A   | Soil   | 09/22/201     | 7 10:54   | ICP-MS2 011SMPL.D | 146035           |
| <u>Analytes</u> | Result         |        | <u>RL</u>     | <u>DF</u> |                   | Date Analyzed    |
| Lead            | 30             |        | 0.50          | 1         |                   | 09/26/2017 22:48 |
| Surrogates      | <u>REC (%)</u> |        | <u>Limits</u> |           |                   |                  |
| Terbium         | 100            |        | 70-130        |           |                   | 09/26/2017 22:48 |
|                 |                |        |               |           |                   |                  |

(Cont.)
CA ELAP 1644 • NELAP 4033ORELAP

Angela Rydelius, Lab Manager



1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

# **Analytical Report**

Client: AEI Consultants

Date Received: 9/22/17 17:30

Date Prepared: 9/25/17

**Project:** 350428

WorkOrder: 1709A05
Extraction Method: SW3050B
Analytical Method: SW6020
Unit: mg/Kg

|                   |               | Lead   | 1             |           |                   |                  |
|-------------------|---------------|--------|---------------|-----------|-------------------|------------------|
| Client ID         | Lab ID        | Matrix | Date C        | ollected  | Instrument        | Batch ID         |
| CS-5-5            | 1709A05-009A  | Soil   | 09/22/20      | 17 11:14  | ICP-MS2 012SMPL.D | 146035           |
| <u>Analytes</u>   | <u>Result</u> |        | <u>RL</u>     | <u>DF</u> |                   | Date Analyzed    |
| Lead              | 38            |        | 0.50          | 1         |                   | 09/26/2017 22:54 |
| <u>Surrogates</u> | REC (%)       |        | <u>Limits</u> |           |                   |                  |
| Terbium           | 104           |        | 70-130        |           |                   | 09/26/2017 22:54 |
| Analyst(s): ND    |               |        |               |           |                   |                  |
| Client ID         | Lab ID        | Matrix | Date C        | ollected  | Instrument        | Batch ID         |
| CS-6-5            | 1709A05-011A  | Soil   | 09/22/20      | 17 11:47  | ICP-MS2 013SMPL.D | 146035           |
| Analytes          | <u>Result</u> |        | <u>RL</u>     | <u>DF</u> |                   | Date Analyzed    |
| Lead              | 53            |        | 0.50          | 1         |                   | 09/26/2017 23:00 |
| <u>Surrogates</u> | REC (%)       |        | <u>Limits</u> |           |                   |                  |
| Terbium           | 101           |        | 70-130        |           |                   | 09/26/2017 23:00 |
| Analyst(s): ND    |               |        |               |           |                   |                  |

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

# **Quality Control Report**

**Client:** AEI Consultants

Date Prepared:9/25/17Date Analyzed:9/26/17Instrument:ICP-MS3Matrix:Soil

**Project:** 350428

WorkOrder: 1709A05

**BatchID:** 146035

**Extraction Method:** SW3050B **Analytical Method:** SW6020

**Unit:** mg/Kg

Sample ID: MB/LCS-146035

1709A04-031AMS/MSD

|                    | QC Sur        | mmary R       | eport fo   | or Metals     |            |             |                  |           |               |
|--------------------|---------------|---------------|------------|---------------|------------|-------------|------------------|-----------|---------------|
| Analyte            | MB<br>Result  | LCS<br>Result |            | RL            | SPK<br>Val |             |                  | CS<br>REC | LCS<br>Limits |
| Lead               | ND            | 45.6          |            | 0.50          | 50         | -           | 91               |           | 75-125        |
| Surrogate Recovery |               |               |            |               |            |             |                  |           |               |
| Terbium            | 473.2         | 469           |            |               | 500        | 95          | 5 94             | ļ.        | 70-130        |
| Analyte            | MS<br>Result  | MSD<br>Result | SPK<br>Val | SPKRef<br>Val | MS<br>%REC | MSD<br>%REC | MS/MSD<br>Limits | RPD       | RPD<br>Limit  |
| Lead               | 294           | 453           | 50         | 401.3         | 0,F13      | 103         | 75-125           | NA        | 20            |
| Surrogate Recovery |               |               |            |               |            |             |                  |           |               |
| Terbium            | 487           | 458           | 500        |               | 97         | 92          | 70-130           | 6.05      | 5 20          |
| Analyte            | DLT<br>Result |               |            | DLTRef<br>Val |            |             |                  | %D        | %D<br>Limit   |
| Lead               | 387           |               |            | 401.3         |            |             |                  | 3.56      | 20            |

<sup>%</sup>D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

## McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

# **County Review Draft CHAIN-OF-CUSTODY RECORD**

WorkOrder: 1709A05 ClientCode: AEL

| Excel | ■ EQuIS | <b>✓</b> Email | HardCopy | ThirdParty | ☐ J-flag |
|-------|---------|----------------|----------|------------|----------|
|-------|---------|----------------|----------|------------|----------|

Detection Summary Dry-Weight

Report to: Bill to: Requested TAT: 5 days:

□ EDF

William Hicks Email: whix@aeiconsultants.com Accounts Payable cc/3rd Party: tbodkin@aeiconsultants.com; **AEI Consultants AEI Consultants** 

☐ WriteOn

□WaterTrax

09/22/2017 Date Received: 2500 Camino Diablo, Ste.#200 PO: 142989 2500 Camino Diablo, Ste. #200 ProjectNo: 350428 Walnut Creek, CA 94597 Walnut Creek, CA 94597 Date Logged: 09/25/2017

(925) 283-6000 FAX: (925) 944-2895 AccountsPayable@AEIConsultants.com

|             |           |        |                 |      |   |   |   | Re | equested | l Tests ( | (See leg | end bel | ow) |    |    |    |
|-------------|-----------|--------|-----------------|------|---|---|---|----|----------|-----------|----------|---------|-----|----|----|----|
| Lab ID      | Client ID | Matrix | Collection Date | Hold | 1 | 2 | 3 | 4  | 5        | 6         | 7        | 8       | 9   | 10 | 11 | 12 |
| 1709A05-001 | CS-1-5    | Soil   | 9/22/2017 08:34 |      | Α |   |   |    |          |           |          |         |     |    |    |    |
| 1709A05-003 | CS-2-5    | Soil   | 9/22/2017 09:06 |      | Α |   |   |    |          |           |          |         |     |    |    |    |
| 1709A05-005 | CS-3-5    | Soil   | 9/22/2017 09:56 |      | Α |   |   |    |          |           |          |         |     |    |    |    |
| 1709A05-007 | CS-4-5    | Soil   | 9/22/2017 10:54 |      | Α |   |   |    |          |           |          |         |     |    |    |    |
| 1709A05-009 | CS-5-5    | Soil   | 9/22/2017 11:14 |      | Α |   |   |    |          |           |          |         |     |    |    |    |
| 1709A05-011 | CS-6-5    | Soil   | 9/22/2017 11:47 |      | Α |   |   |    |          |           |          |         |     |    |    |    |

#### Test Legend:

| 1 PBMS_TTLC_S | 2  | 3  | 4  |
|---------------|----|----|----|
| 5             | 6  | 7  | 8  |
| 9             | 10 | 11 | 12 |

Prepared by: Jena Alfaro

#### **Comments:**

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.



# McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

## **WORK ORDER SUMMARY**

| Client Name: AEI CONSULTANTS Project: 350428 Work Orde | : 1709 <i>A</i> |
|--------------------------------------------------------|-----------------|
|--------------------------------------------------------|-----------------|

Client Contact: William Hicks

QC Level: LEVEL 2

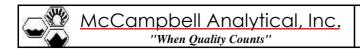
Contact's Email: whix@aeiconsultants.com

Comments:

Date Logged: 9/25/2017

|              |           | ☐ WaterTrax | WriteOn       | EDF | Excel                     | ]Fax <b>☑</b> Email        | HardC              | opyThirdPar            | ty 🗀   | J-flag                          |
|--------------|-----------|-------------|---------------|-----|---------------------------|----------------------------|--------------------|------------------------|--------|---------------------------------|
| Lab ID       | Client ID | Matrix      | Test Name     |     | Containers<br>/Composites | Bottle & Preservative      | De-<br>chlorinated | Collection Date & Time | TAT    | Sediment Hold SubOut<br>Content |
| 1709A05-001A | CS-1-5    | Soil        | SW6020 (Lead) |     | 1                         | Stainless Steel tube 2"x6" |                    | 9/22/2017 8:34         | 5 days |                                 |
| 1709A05-002A | CS-1-1.5  | Soil        |               |     | 1                         | Stainless Steel tube 2"x6" |                    | 9/22/2017 8:55         |        | ✓                               |
| 1709A05-003A | CS-2-5    | Soil        | SW6020 (Lead) |     | 1                         | Stainless Steel tube 2"x6" |                    | 9/22/2017 9:06         | 5 days |                                 |
| 1709A05-004A | CS-2-1.5  | Soil        |               |     | 1                         | Stainless Steel tube 2"x6" |                    | 9/22/2017 9:43         |        | ✓                               |
| 1709A05-005A | CS-3-5    | Soil        | SW6020 (Lead) |     | 1                         | Stainless Steel tube 2"x6" |                    | 9/22/2017 9:56         | 5 days |                                 |
| 1709A05-006A | CS-3-1.5  | Soil        |               |     | 1                         | Stainless Steel tube 2"x6" |                    | 9/22/2017 10:21        |        | ✓                               |
| 1709A05-007A | CS-4-5    | Soil        | SW6020 (Lead) |     | 1                         | Stainless Steel tube 2"x6" |                    | 9/22/2017 10:54        | 5 days |                                 |
| 1709A05-008A | CS-4-1.5  | Soil        |               |     | 1                         | Stainless Steel tube 2"x6" |                    | 9/22/2017 11:06        |        | ✓                               |
| 1709A05-009A | CS-5-5    | Soil        | SW6020 (Lead) |     | 1                         | Stainless Steel tube 2"x6" |                    | 9/22/2017 11:14        | 5 days |                                 |
| 1709A05-010A | CS-5-1.5  | Soil        |               |     | 1                         | Stainless Steel tube 2"x6" |                    | 9/22/2017 11:39        |        | ✓                               |
| 1709A05-011A | CS-6-5    | Soil        | SW6020 (Lead) |     | 1                         | Stainless Steel tube 2"x6" |                    | 9/22/2017 11:47        | 5 days |                                 |
| 1709A05-012A | CS-6-1.5  | Soil        |               |     | 1                         | Stainless Steel tube 2"x6" |                    | 9/22/2017 12:03        |        | <b>✓</b>                        |

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).


- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.



| McCAMP                                                                                                | BELL         | ANAL               | YT          | ICA       | L, INC   | 7.   |          |          |        |        |         | (   | CHA   | IN O    | F CU   | JSTO       | DY      | REC      | COR     | D      |           |          |          |            |
|-------------------------------------------------------------------------------------------------------|--------------|--------------------|-------------|-----------|----------|------|----------|----------|--------|--------|---------|-----|-------|---------|--------|------------|---------|----------|---------|--------|-----------|----------|----------|------------|
| 1534 \                                                                                                | Willow Pass  | Rd. Pittsburg      | , Ca. 9     | 4565-170  | 1        |      | Turn     | Aroun    | d Time | :1 Day | Rush    |     | 2 Day | y Rush  |        | 3 Day      | Rush    |          | STD     | •      | Quo       | te#      |          |            |
| Teleph                                                                                                | one: (877) 2 | .52-9262 / Fa      | x: (925     | ) 252-926 | 59       |      |          | J-Flag   | MDL    |        | ESL     |     |       | Clean   | ір Арр | roved      |         | 2        |         | Bott   | le Ord    | _        |          |            |
| www.mccampl                                                                                           | bell.com     | ma                 | in@mo       | ccampbe   | ll.com   |      | Deliv    | ery Fo   | rmat:  | GeoTr  | acker E | DF  |       | PDF     | •      | EDD        |         | Wri      | ite On  | (DW)   |           | Е        | QuIS     |            |
| Report To: AEI Consultants                                                                            |              | Bill To:           | AEI Cor     | nsultants |          |      |          |          |        |        |         |     |       | Aı      | nalysi | is Req     | uest    | ed       |         |        |           |          |          |            |
| Company: AEI Consultants                                                                              |              |                    |             |           |          |      |          |          |        |        |         |     |       | Γ       |        |            |         | 1        |         |        |           |          |          |            |
| Email: whix@aeiconsultants.com                                                                        |              |                    |             |           |          |      | 30       |          |        |        |         |     |       | L       |        |            |         |          | . 11    |        |           |          |          |            |
| Alt Email:tbodkin@aeiconsultants.com                                                                  | i.i          | Tele:              | 925-746     | 6-6050    |          |      | 35       |          |        |        |         |     |       |         |        |            |         |          | -       |        |           |          |          |            |
| Project Name/#: 350428                                                                                |              |                    |             |           |          |      | 10       |          | H      |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| Project Location: Moss Beach                                                                          |              | PO #1              | 42989       |           |          |      |          |          |        |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| Sampler Signature:                                                                                    |              | CB1                | 1           |           |          |      | 9        | 2        |        |        |         |     |       |         |        |            |         |          |         |        |           | - 1      |          |            |
| SAMPLE ID                                                                                             |              |                    | K           | 100       |          |      |          |          |        |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| Location / Field Point                                                                                | Date         | Time               | #Containers | Matrix    | Preserva | tive | 200      | 6        |        |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| CS-1-5                                                                                                | 9/22         | 0834               | T           | Soil      | ICE      |      | X        | $\vdash$ |        |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| CS-1-15                                                                                               |              | 0855               |             |           |          |      |          | X        | C      |        |         | ř.  |       |         |        |            |         |          |         |        | П         |          |          |            |
| CS-7-5                                                                                                |              | 0906               |             |           |          |      | X        | Ť        |        |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| CS -2-1.5                                                                                             |              | 0943               |             |           |          |      |          | X        |        |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| CS-3-5                                                                                                |              | 0956               |             |           |          |      | X        |          |        |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| CS-3-1.5                                                                                              |              | 1021               |             |           |          |      |          | X        |        |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| CS-4-5                                                                                                |              | 1054               |             |           |          |      | X        |          |        |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| CS-4-1.5                                                                                              |              | 1106               |             |           |          |      |          | X        |        |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| CS-5-S                                                                                                |              | 1119               |             |           |          |      | X        |          |        |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| CS-5-1.5                                                                                              | 4            | 1139               | V           | 0         | V        | V    |          | X        | _      |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| MAI clients MUST disclose any dangerous chemica<br>Non-disclosure incurs an immediate \$250 surcharge |              |                    |             |           |          |      |          |          |        |        |         |     |       |         |        | nt as a re | esult o | f brief, | gloved, | open a | air, samp | le hand  | lling by | MAI staff. |
| * If metals are requested for water samples and                                                       |              |                    |             |           |          |      | <u> </u> |          |        |        |         |     |       | WOIK Sa | iciy.  |            |         |          |         | Co     | mment     | e / Ine  | nuctio   |            |
| Please provide an adequate volume of sample.                                                          |              |                    |             |           |          |      | _        |          |        |        |         | _   |       | ort.    |        |            |         | -        |         | -      | Jimion    | 3 / 1113 | auctio   | 15         |
| Relinquished By / Compar                                                                              |              |                    | Dat         | _         | Time     |      | i        | _        |        | 0.00   | pany N  | -   | _     | -       | Pa     | ate        | Tir     | me       |         |        |           |          |          |            |
| my                                                                                                    | BI           | 9                  | 9/2         | 7 1       | 730      |      | /<       |          |        | 1      |         |     |       |         | 9/2    | 2          | 17      | 30       |         |        |           |          |          |            |
| ,                                                                                                     |              |                    |             | - 1       |          | 1    | 1        |          |        | etyn.  | >       |     |       |         | li .   |            |         |          |         |        |           |          |          |            |
|                                                                                                       | 0.50         |                    |             |           |          |      | 5.0      |          |        |        |         |     |       |         |        |            |         |          |         |        |           |          |          |            |
| Matrix Code: DW=Drinking Water, O                                                                     |              |                    |             |           |          |      |          |          |        | =Sluc  | lge, A  | =Ai | r, Wl | P=Wij   | pe, O  | =Othe      |         |          | 10      | 0      |           |          |          |            |
| Preservative Code: 1=4°C 2=HCl                                                                        | $3=H_2SO_4$  | 4=HNO <sub>3</sub> | 5=Na(       | OH 6=     | ZnOAc/N  | aOI  | H 7      | =Non     | е      |        |         |     |       |         |        |            | T       | emp      | Y       | .U     | °C        | Initi    | als -    |            |

MAI Work Order #

| McCAMI                                                                                                | PBELL         | ANAI          | LYT         | <b>ICAL</b> | , INC.       |          |          |          |                                 |          | •              | CHAI     | N O   | F C    | USTO     | DDY      | REC      | COR     | D        |            |          |          |          |
|-------------------------------------------------------------------------------------------------------|---------------|---------------|-------------|-------------|--------------|----------|----------|----------|---------------------------------|----------|----------------|----------|-------|--------|----------|----------|----------|---------|----------|------------|----------|----------|----------|
| 1534                                                                                                  | Willow Pass 1 | Rd. Pittsburg | g, Ca. 9    | 4565-1701   |              | Turn     | Aroun    | d Time   | :1 Day                          | Rush     |                | 2 Day    | Rush  |        | 3 Day    | Rush     |          | STD     | •        | Quot       | te#      |          |          |
| Teleph                                                                                                | one: (877) 2: | 52-9262 / Fa  | ax: (925    | ) 252-9269  |              | - 1      | J-Flag   | MDL      |                                 | ESL      |                |          | Clean | ір Арј | proved   |          |          |         | Bott     | e Orde     | er#      |          |          |
| www.mccamp                                                                                            | bell.com      | ma            | in@m        | ccampbell.  | com          | Deliv    | ery Fo   | rmat:    | GeoTi                           | racker l | EDF            |          | PDF   | •      | EDD      |          | Wr       | ite On  | (DW)     |            | E        | QuIS     |          |
| Report To: AEI Consultants                                                                            |               | Bill To:      | AEI Co      | nsultants   |              | П        |          |          |                                 |          |                |          | Aı    | alys   | is Re    | quest    | ted      |         |          |            |          |          |          |
| Company: AEI Consultants                                                                              | V.            |               |             |             |              |          |          | 11       |                                 |          |                |          |       |        |          |          | 1        |         |          |            | Т        |          |          |
| Email: whix@aeiconsultants.com                                                                        |               |               |             |             | 18           | 194      |          |          |                                 |          |                |          | 12    |        |          |          |          | 11      |          | .          |          |          | 1        |
| Alt Email: tbodkin@aeiconsultants.com                                                                 |               | Tele:         | 925-746     | 6-6050      |              | 30       | 1        |          |                                 |          |                |          |       |        |          |          |          | 7       |          |            |          |          |          |
| Project Name/#: 350428                                                                                |               |               |             |             |              | 4        | 1        |          |                                 |          |                |          |       |        |          |          |          |         |          |            |          |          |          |
| Project Location: Moss Beach                                                                          |               | PO #          | 142989      |             |              | 1 、      |          |          |                                 |          |                |          |       |        |          |          |          |         |          |            |          |          |          |
| Sampler Signature:                                                                                    | -             | -             | 15          | 10          |              | -9       |          |          |                                 |          |                |          |       |        |          |          |          |         |          |            |          |          |          |
| SAMPLE ID                                                                                             | Sam           | pling         | ners        |             |              | 6        | 1        |          |                                 |          |                |          |       |        |          |          |          |         |          |            |          |          |          |
| Location / Field Point                                                                                | Du            | T             | #Containers | Matrix      | Preservative | à        | A Of     | 1        |                                 |          |                |          |       |        |          |          |          |         |          |            |          |          | - 1      |
|                                                                                                       | Date          | Time          | â           |             |              | 1        | ~        |          |                                 |          |                |          |       |        |          |          |          |         |          |            |          |          |          |
| CS-6-5                                                                                                | 9/22          | 1147          | (           | Soil        | TCE          | X        |          |          |                                 |          |                |          |       |        |          |          |          |         |          |            |          |          |          |
| CS-6-1-5                                                                                              |               | 1203          | 1           | N           | 8            |          | X        |          |                                 |          |                |          |       |        |          |          |          |         |          | T          |          |          |          |
|                                                                                                       | -             |               |             |             |              |          |          |          |                                 |          |                |          |       |        |          |          |          |         |          |            | $\dashv$ | $\neg$   | $\neg$   |
|                                                                                                       |               |               | $\vdash$    |             |              | -        | $\vdash$ |          | _                               |          | $\vdash$       | $\vdash$ | _     |        | Н        |          | $\vdash$ | -       | -        | $\dashv$   | $\dashv$ | $\dashv$ | $\dashv$ |
|                                                                                                       | -             |               | $\vdash$    |             |              | -        | ├        | -        | $\vdash$                        | -        | _              | $\vdash$ |       |        | Н        |          | $\vdash$ | -       | -        | _          | $\dashv$ | -        | $\dashv$ |
|                                                                                                       |               |               |             |             |              |          | _        | _        | _                               | _        | _              |          |       |        | Ш        |          |          |         |          | -          | _        | _        |          |
|                                                                                                       |               |               |             |             | - "          |          |          |          |                                 | 1        |                |          |       |        |          |          |          |         |          |            |          |          |          |
|                                                                                                       |               |               |             |             |              |          |          |          |                                 |          |                |          |       |        |          |          |          |         |          |            |          |          |          |
| · ·                                                                                                   |               |               |             |             |              |          |          |          |                                 |          |                |          |       |        |          |          |          |         |          | $\neg$     | $\neg$   | $\neg$   |          |
|                                                                                                       |               |               |             |             |              | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$                        |          |                | $\vdash$ |       |        | Н        |          |          |         | $\neg$   | -          | $\dashv$ | $\dashv$ | $\dashv$ |
|                                                                                                       |               |               | $\vdash$    |             |              | $\vdash$ | ├        | _        | _                               |          | _              | Н        |       |        | $\vdash$ | _        | $\vdash$ | -       | $\dashv$ | +          | $\dashv$ | $\dashv$ | +        |
|                                                                                                       |               |               |             |             | <u> </u>     |          |          |          |                                 |          |                | Ш        |       |        |          |          |          |         |          | ᆚ          | $\perp$  | $\perp$  | $\perp$  |
| MAI clients MUST disclose any dangerous chemica<br>Non-disclosure incurs an immediate \$250 surcharge |               |               |             |             |              |          |          |          |                                 |          |                |          |       |        | ent as a | result o | f brief, | gloved, | open a   | ir, sample | e hand   | ling by  | MAI staf |
| * If metals are requested for water samples and                                                       |               | -             |             |             |              |          |          |          |                                 |          |                | _        |       | ,-     |          |          |          |         | Co       | mments     | / Inst   | nuction  | ns       |
| Please provide an adequate volume of sample.                                                          |               |               |             |             |              |          |          |          |                                 |          | _              |          | rt.   |        |          | -        |          |         |          |            |          |          |          |
| Relinquished By / Compar                                                                              |               |               | Da          | -           | ime          |          |          | ved By   | THE RESERVE THE PERSON NAMED IN | -        | NAME OF STREET |          |       | D      | ate ,    | Ti       | me       |         |          |            |          |          |          |
| well es B                                                                                             | 70            |               | 7/2         | 22 1        | 750          |          | K        | _        | /                               |          |                |          |       | 7/2    | 7/17     | B        | 30       |         |          |            |          |          |          |
|                                                                                                       |               |               |             | 2 1 1 7     |              | /        |          |          |                                 |          |                |          |       |        |          | 44       |          |         |          |            |          |          |          |
|                                                                                                       |               |               |             |             |              |          |          |          |                                 |          |                |          |       |        |          |          |          |         |          |            |          |          |          |
| Matrix Code: DW=Drinking Water, O                                                                     | GW=Ground     | Water, W      | W=W         | aste Water  | , SW=Seaw    | ater,    | S=So     | il, SL   | =Slu                            | dge, A   | λ=Ai           | r, WP    | =Wir  | e, O   | =Othe    | er       |          |         |          |            |          |          |          |



1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

## **Sample Receipt Checklist**

| Client Name:<br>Project Name:     | AEI Consultants<br>350428                        |        |                 | Date and Time Received<br>Date Logged:<br>Received by: | 9/22/2017 17:30<br>9/25/2017<br>Kena Ponce |
|-----------------------------------|--------------------------------------------------|--------|-----------------|--------------------------------------------------------|--------------------------------------------|
| WorkOrder №:<br>Carrier:          | 1709A05 Matrix: Soil Client Drop-In              |        |                 | Logged by:                                             | Jena Alfaro                                |
|                                   | Chain of C                                       | ustody | (COC) Inforr    | mation                                                 |                                            |
| Chain of custody                  | present?                                         | Yes    | •               | No 🗆                                                   |                                            |
| Chain of custody                  | signed when relinquished and received?           | Yes    | •               | No 🗆                                                   |                                            |
| Chain of custody                  | agrees with sample labels?                       | Yes    | •               | No 🗌                                                   |                                            |
| Sample IDs noted                  | by Client on COC?                                | Yes    | <b>✓</b>        | No 🗌                                                   |                                            |
| Date and Time of                  | collection noted by Client on COC?               | Yes    | <b>✓</b>        | No 🗆                                                   |                                            |
| Sampler's name                    | noted on COC?                                    | Yes    | <b>✓</b>        | No 🗌                                                   |                                            |
| COC agrees with                   | Quote?                                           | Yes    |                 | No 🗆                                                   | NA 🗹                                       |
|                                   | Sampl                                            | e Rece | ipt Information | <u>on</u>                                              |                                            |
| Custody seals into                | act on shipping container/cooler?                | Yes    |                 | No 🗌                                                   | NA 🗹                                       |
| Shipping containe                 | er/cooler in good condition?                     | Yes    | <b>✓</b>        | No 🗌                                                   |                                            |
| Samples in prope                  | r containers/bottles?                            | Yes    | <b>✓</b>        | No 🗌                                                   |                                            |
| Sample container                  | s intact?                                        | Yes    | <b>✓</b>        | No 🗌                                                   |                                            |
| Sufficient sample                 | volume for indicated test?                       | Yes    | •               | No 🗌                                                   |                                            |
|                                   | Sample Preservation                              | on and | Hold Time (H    | IT) Information                                        |                                            |
| All samples recei                 | ved within holding time?                         | Yes    | <b>✓</b>        | No 🗌                                                   | NA 🗌                                       |
| Sample/Temp Bla                   | ank temperature                                  |        | Temp: 6°C       | ;                                                      | NA 🗌                                       |
| Water - VOA vials                 | s have zero headspace / no bubbles?              | Yes    |                 | No 🗌                                                   | NA 🗹                                       |
| Sample labels ch                  | ecked for correct preservation?                  | Yes    | <b>✓</b>        | No 🗌                                                   |                                            |
| pH acceptable up                  | on receipt (Metal: <2; 522: <4; 218.7: >8)?      | Yes    |                 | No 🗌                                                   | NA 🗹                                       |
| Samples Receive                   |                                                  | Yes    | ✓               | No 🗌                                                   |                                            |
|                                   | (Ice Typ                                         | e: WE  | TICE )          |                                                        |                                            |
| UCMR Samples:<br>Total Chlorine t | ested and acceptable upon receipt for EPA 522?   | Yes    |                 | No 🗌                                                   | NA 🗹                                       |
|                                   | ested and acceptable upon receipt for EPA 218.7, |        |                 |                                                        | NA 🗹                                       |
| Comments:                         | =========                                        | ==:    |                 | =======                                                | =======                                    |

# APPENDIX C STATISTICAL ANALYSIS



**TABLE 1: SOIL SAMPLE DATA SUMMARY 95% UCL CALCULATION** 

## Carlos Street at Sierra Street, Moss Beach, California 94038

|          | Noven      | nber 2-2017 |         |
|----------|------------|-------------|---------|
| Location | Sample     | Depth       | Lead    |
| ID       | Date       | (feet bgs)  | (mg/kg) |
| B-1-1.5  | 12/22/2015 | 1.5         | 4.5     |
| B-3-2.0  | 12/23/2015 | 2           | 0.5     |
| B-3-5.0  | 12/23/2015 | 5           | 0.5     |
| B-4-0.0  | 12/23/2015 | 0           | 29      |
| B-5-0.0  | 12/23/2015 | 0           | 54      |
| B-6-0.0  | 12/23/2015 | 0           | 8.4     |
| B-7-0.0  | 12/23/2015 | 0           | 230     |
| B-7-1.5  | 12/23/2015 | 1.5         | 7       |
| CS-1     | 9/22/2017  | 0           | 36      |
| CS-2     | 9/22/2017  | 0           | 13      |
| CS-3     | 9/22/2017  | 0           | 290     |
| B-8-0.0  | 12/23/2015 | 0           | 23      |
| B-9-0.0  | 12/22/2015 | 0           | 6.5     |
| B-10-0.0 | 12/22/2015 | 0           | 45      |
| B-11-0.0 | 12/22/2015 | 0           | 6.2     |
| B-12-5.0 | 12/23/2015 | 5           | 0.5     |
| B-13-6.0 | 12/23/2015 | 6           | 0.5     |
| B-14-2.0 | 12/23/2015 | 2           | 0.5     |
| B-15-0.0 | 12/22/2015 | 0           | 25      |
| B-15-7.0 | 12/23/2015 | 7           | 0.5     |
| B-16-0.0 | 12/22/2015 | 0           | 15      |
| B-17-4.0 | 12/22/2015 | 4           | 0.5     |
| B-18-0.0 | 12/22/2015 | 0           | 12      |
| B-19-0.0 | 12/22/2015 | 0           | 7.9     |
| B-20-0.0 | 12/22/2015 | 0           | 41      |
| B-20-1.5 | 12/22/2015 | 1.5         | 8.1     |
| B-21-0.0 | 12/22/2015 | 0           | 88      |
| B-21-1.5 | 12/22/2015 | 1.5         | 8.8     |
| CS-4     | 9/22/2017  | 0           | 30      |
| CS-5     | 9/22/2017  | 0           | 38      |
| CS-6     | 9/22/2017  | 0           | 53      |
| B-22-0.0 | 12/22/2015 | 0           | 19      |
| B-23-0.0 | 12/22/2015 | 0           | 15      |
| B-24-0.0 | 12/22/2015 | 0           | 16      |
| B-25-0.0 | 12/22/2015 | 0           | 8.9     |
| B-26-0.0 | 12/22/2015 | 0           | 7.4     |

## **TABLE 1: SOIL SAMPLE DATA SUMMARY 95% UCL CALCULATION**


#### Carlos Street at Sierra Street, Moss Beach, California 94038 November 2-2017 Depth Location Sample Lead (feet bgs) (mg/kg) ID **Date** 12/22/2015 B-27-0.0 6.3 B-28-0.0 12/22/2015 0 9.7 12/22/2015 B-29-0.0 8.7 0 B-30-0.0 12/22/2015 0 9.1 12/22/2015 B-31-0.0 0 7.8 B-32-0.0 12/22/2015 0 7.0 12/22/2015 B-33-0.0 0 39 12/22/2015 B-34-0.0 34 **Comparison Levels** San Francisco Bay Regional Water Quality Control Board Environmental Screening Level (RWQCB ESL) Residential Use 80 RWQCB ESL for any Land Use/any Depth 160 Total Threshold Limit Concentration (TTLC) 1,000 Soluble Threshold Limit Concentration (STLC) **Statistical Analysis:** Lead Laboratory Reporting Limit (mg/kg) = 0.5 Total Number of Observations -44 0.5 Sample Minimum = Sample maximum = 290 Sample Mean = 28.88 Standard Deiation (SD) = 54.59 Coefficient of Variation (CV) = 1.89 EPA Pro UCL Version 5.1 Adjusted Gamma UCL (mg/kg) = 42.04

|               | Α   | В                 | С                        | D E                                              | F               | G                           | Н                                            | ı               | J K                                                  | L              |
|---------------|-----|-------------------|--------------------------|--------------------------------------------------|-----------------|-----------------------------|----------------------------------------------|-----------------|------------------------------------------------------|----------------|
| 1             |     |                   |                          | 95% UC                                           | L Calculat      | tion for Lead               | lioS ni t                                    | Coun            | ty Review Dra                                        | aft            |
| 2             |     |                   | Carlo                    | os Street at Sie                                 | rra Street,     | Moss Beach                  | , Califor                                    | nia 94038       |                                                      |                |
| 3             |     |                   |                          |                                                  | Novemb          | er 2, 2017                  |                                              |                 |                                                      |                |
| 4             |     |                   | lected Options           |                                                  |                 |                             |                                              |                 |                                                      |                |
| 5             |     | Date/Time of      | Computation<br>From File | ProUCL 5.111/2/201<br>WorkSheet.xls              | 7 9:20:27 AM    |                             |                                              |                 |                                                      |                |
| <u>6</u><br>7 |     | F                 | Full Precision           | OFF                                              |                 |                             |                                              |                 |                                                      |                |
| 8             |     |                   |                          | 95%                                              |                 |                             |                                              |                 |                                                      |                |
| 9             | Nur | mber of Bootstrap | p Operations             | 2000                                             | -4 O-11 D-      |                             | <u> </u>                                     |                 |                                                      |                |
| 10            |     |                   |                          | L6                                               |                 | esults (mg/kg<br>Statistics | <u>)                                    </u> |                 |                                                      |                |
| 12            |     |                   | Total                    | Number of Observati                              | ons 44          |                             |                                              | Numbe           | er of Distinct Observations                          | 36             |
| 13            |     |                   |                          |                                                  |                 |                             |                                              | Numbe           | er of Missing Observations                           |                |
| 14            |     |                   |                          |                                                  | num 0.5         |                             |                                              |                 | Mean<br>Median                                       |                |
| 15<br>16      |     |                   |                          | IVIAAIII                                         | SD 54.59        |                             |                                              |                 | Std. Error of Mean                                   | _              |
| 17            |     |                   |                          | Coefficient of Varia                             | tion 1.89       |                             |                                              |                 | Skewness                                             | 3.872          |
| 18            |     |                   |                          |                                                  |                 |                             |                                              |                 |                                                      |                |
| 19            |     |                   | 9                        | Shapiro Wilk Test Stati                          |                 | GOF Test                    |                                              | Shapiro Wilk    | GOF Test                                             |                |
| 20<br>21      |     |                   |                          | hapiro Wilk Critical Va                          |                 |                             | Data No                                      | -               | 6 Significance Level                                 |                |
| 22            |     |                   |                          | Lilliefors Test Stat                             |                 |                             |                                              | Lilliefors G    |                                                      |                |
| 23            |     |                   | 5                        | % Lilliefors Critical Va                         |                 | EO( Olamificana I           |                                              | ot Normal at 5% | 6 Significance Level                                 |                |
| 24<br>25      |     |                   |                          | Data                                             | vot Normai at : | 5% Significance Lo          | evei                                         |                 |                                                      |                |
| 26            |     |                   |                          |                                                  | Assuming Nor    | mal Distribution            |                                              |                 |                                                      |                |
| 27            |     |                   | 95% Norma                |                                                  |                 |                             | 95%                                          |                 | ed for Skewness)                                     |                |
| 28            |     |                   |                          | 95% Student's-t L                                | JCL 42.72       |                             |                                              |                 | ed-CLT UCL (Chen-1995)<br>ied-t UCL (Johnson-1978)   | 47.55<br>43.52 |
| 29<br>30      |     |                   |                          |                                                  |                 |                             |                                              | 95% (VIOUIII    | led-t OCL (Johnson-1976)                             | 43.52          |
| 31            |     |                   |                          |                                                  | Gamma           | GOF Test                    |                                              |                 |                                                      |                |
| 32            |     |                   |                          | A-D Test Stati                                   |                 |                             |                                              |                 | amma GOF Test                                        |                |
| 33            |     |                   |                          | 5% A-D Critical Va                               |                 | Da                          |                                              |                 | d at 5% Significance Level  Gamma GOF Test           |                |
| 34<br>35      |     |                   |                          | 5% K-S Critical Va                               |                 | Detected                    | _                                            | -               | ributed at 5% Significance                           | Level          |
| 36            |     |                   | [                        | Detected data follow                             | Appr. Gamma     | Distribution at 5%          | Significano                                  | ce Level        |                                                      |                |
| 37            |     |                   |                          |                                                  |                 | Statistics                  |                                              |                 |                                                      |                |
| 38<br>39      |     |                   |                          | k hat (M                                         |                 | Statistics                  |                                              | k               | star (bias corrected MLE)                            | 0.569          |
| 40            |     |                   |                          | Theta hat (M                                     |                 |                             |                                              |                 | star (bias corrected MLE)                            | 50.73          |
| 41            |     |                   |                          | nu hat (M                                        |                 |                             |                                              |                 | nu star (bias corrected)                             | 50.1           |
| 42            |     |                   | ML                       | LE Mean (bias correc                             | ted) 28.88      |                             |                                              | Annrovimate     | MLE Sd (bias corrected)<br>e Chi Square Value (0.05) | 38.28<br>34.85 |
| 43<br>44      |     |                   | Adjus                    | sted Level of Significa                          | nce 0.0445      |                             |                                              |                 | djusted Chi Square Value                             | 34.42          |
| 45            |     |                   |                          |                                                  |                 |                             |                                              |                 |                                                      |                |
| 46            |     | OE0/ A            | vimata Carre             | a UCL (use when n>=                              |                 | nma Distribution            | OE0/                                         | Adjusted Care   | ma UCL (use when n<50)                               | 42.04          |
| 47<br>48      |     | 90% Appro         | AIIIIale Gallima         | 3 OCL (use when fi>=                             | 41.52           |                             | 95%                                          | Aujusteu Gami   | ina OCL (use when n<50)                              | 42.04          |
| 49            |     |                   |                          |                                                  |                 | I GOF Test                  |                                              |                 |                                                      |                |
| 50            |     |                   |                          | Shapiro Wilk Test Stati                          |                 |                             |                                              | <u> </u>        | ormal GOF Test                                       |                |
| 51            |     |                   | 5% SI                    | hapiro Wilk Critical Va<br>Lilliefors Test Stati |                 |                             |                                              | Lognormal at 5  | 5% Significance Level                                |                |
| 52<br>53      |     |                   | 5                        | % Lilliefors Critical Va                         |                 |                             |                                              |                 | 5% Significance Level                                |                |
| 54            |     |                   |                          | Data No                                          | t Lognormal a   | t 5% Significance           |                                              |                 |                                                      |                |
| 55            |     |                   |                          |                                                  | 1               | al Chatichina               |                                              |                 |                                                      |                |
| 56<br>57      |     |                   | ı                        | Minimum of Logged D                              |                 | al Statistics               |                                              |                 | Mean of logged Data                                  | 2.323          |
| 58            |     |                   |                          | Maximum of Logged D                              |                 |                             |                                              |                 | SD of logged Data                                    | 1.615          |
| 59            |     |                   |                          |                                                  |                 |                             |                                              |                 |                                                      |                |
| 60            |     |                   |                          | 95% H-L                                          |                 | ormal Distribution          |                                              | 000/            | Chebyshev (MVUE) UCL                                 | 69.93          |
|               |     |                   | 050/                     |                                                  |                 |                             |                                              |                 | , ,                                                  | 107.4          |
| 61            |     |                   | 95% (                    | Chebyshev (MVUE) L                               | JCL 85.62       |                             |                                              | 97.5%           | Chebyshev (MVUE) UCL                                 | 107.4          |
| 62            |     |                   |                          | Chebyshev (MVUE) t<br>Chebyshev (MVUE) t         |                 | +                           |                                              | 97.5%           | Chebysnev (MVUE) UCL                                 | 107.4          |

|    | Α                                                               | В                                                             | С                  | D              | Е              | F                | G                   | Н           | I                | J            | K             |      | L     |  |  |  |
|----|-----------------------------------------------------------------|---------------------------------------------------------------|--------------------|----------------|----------------|------------------|---------------------|-------------|------------------|--------------|---------------|------|-------|--|--|--|
| 65 |                                                                 |                                                               |                    |                | Nonparamet     | ric Distribution | on Free UCL Sta     | atistics    | Coun             | ty Re        | view D        | raft |       |  |  |  |
| 66 |                                                                 |                                                               |                    | ata appear     | to follow a D  | iscernible Di    | stribution at 5%    | Significan  | ce Level         | ,            |               |      |       |  |  |  |
| 67 |                                                                 |                                                               |                    |                |                |                  |                     |             |                  |              |               |      |       |  |  |  |
| 68 |                                                                 |                                                               |                    |                | Nonpara        | ametric Distri   | bution Free UCI     | Ls          |                  |              |               |      |       |  |  |  |
| 69 |                                                                 |                                                               |                    | 95             | % CLT UCL      | 42.42            |                     |             |                  | 95%          | Jackknife U   | CL 4 | 12.72 |  |  |  |
| 70 |                                                                 |                                                               | 95%                | Standard Bo    | otstrap UCL    | 42.1             |                     |             |                  | 95% B        | ootstrap-t U  | CL 6 | 68.07 |  |  |  |
| 71 |                                                                 |                                                               | 9!                 | 5% Hall's Bo   | otstrap UCL    | 109.1            |                     |             | 95%              | Percentile   | Bootstrap U   | CL 4 | 13.77 |  |  |  |
| 72 |                                                                 |                                                               | 9                  | 5% BCA Bo      | otstrap UCL    | 51.22            |                     |             |                  |              |               |      |       |  |  |  |
| 73 |                                                                 | 90% Chebyshev(Mean, Sd) UCL 53.57 95% Chebyshev(Mean, Sd) UCL |                    |                |                |                  |                     |             |                  |              |               |      |       |  |  |  |
| 74 | 97.5% Chebyshev(Mean, Sd) UCL 80.27 99% Chebyshev(Mean, Sd) UCL |                                                               |                    |                |                |                  |                     |             |                  |              |               |      |       |  |  |  |
| 75 |                                                                 |                                                               |                    |                |                |                  |                     |             |                  |              |               | -    |       |  |  |  |
| 76 |                                                                 |                                                               |                    |                | ;              | Suggested U      | CL to Use           |             |                  |              |               |      |       |  |  |  |
| 77 |                                                                 |                                                               | 95%                | % Adjusted C   | Gamma UCL      | 42.04            |                     |             |                  |              |               |      |       |  |  |  |
| 78 |                                                                 |                                                               |                    |                |                |                  |                     |             |                  |              |               |      |       |  |  |  |
| 79 |                                                                 |                                                               | When a da          | ta set follows | s an approxir  | mate (e.g., no   | rmal) distributior  | n passing o | ne of the GOF t  | est          |               |      |       |  |  |  |
| 80 |                                                                 | When app                                                      | olicable, it is su | ggested to u   | se a UCL ba    | sed upon a di    | stribution (e.g., ເ | gamma) pa   | ssing both GOF   | tests in Pr  | oUCL          |      |       |  |  |  |
| 81 |                                                                 |                                                               |                    |                |                |                  |                     |             |                  |              |               |      |       |  |  |  |
| 82 |                                                                 | Note: Sugge                                                   | estions regardin   | g the selecti  | on of a 95%    | UCL are prov     | ided to help the    | user to sel | ect the most app | propriate 95 | 5% UCL.       |      |       |  |  |  |
| 83 |                                                                 |                                                               | Re                 | commendat      | ions are base  | ed upon data     | size, data distrib  | oution, and | skewness.        |              |               |      |       |  |  |  |
| 84 |                                                                 | These reco                                                    | mmendations a      | are based up   | on the result  | s of the simul   | ation studies sur   | mmarized i  | n Singh, Maichl  | e, and Lee   | (2006).       |      |       |  |  |  |
| 85 |                                                                 | However, simu                                                 | ulations results   | will not cove  | er all Real Wo | orld data sets   | ; for additional in | sight the u | ser may want to  | consult a s  | statistician. |      |       |  |  |  |

# APPENDIX D CONCEPTUAL SITE DRAWINGS













MOSS BEACH, CA



